Homework 5, Honors Calculus II PRACTICE SHEET

Problem 1. Calculate the area bounded by the graphs of y = f(x) and y = g(x)in the following scenarios (always draw a picture first):

- (i) $f(x) = \sqrt{x}$ and $g(x) = x^3$ between their intersections.
- (ii) $f(x) = e^x$ and $g(x) = e^{-x}$ over the interval [-1, 1].
- (iii) $f(x) = \ln(2)$ and $g(x) = \ln(x)$ over the interval $\left[\frac{1}{e}, 2\right]$.

(iv) $f(x) = \frac{\ln(x)}{x}$ and g(x) = -x + 1 from their intersection to $x = e^2$.

Problem 2. Calculate the following integrals:

(i) $\int x^2 e^{-x} dx = ?$ (ii) $\int_{1}^{3} x^{3} \ln(x) dx = ?$ (iii) $\int x \cos(x) dx = ?$ (iii) $\int x \cos(x) dx = ?$ (iv) $\int \frac{1}{x^3 - x} dx = ?$ (v) $\int_{-1}^{1} \frac{x^7 - x^{11}}{\cos x} dx = ?$ (vi) $\int_{0}^{\pi/4} \tan(x) dx = ?$ (vii) $\int \frac{(\ln x)^3 + 5}{x} dx = ?$ (viii) $\int_{0}^{1} \frac{x^3 + 2x^2 - x + 1}{x + 1} dx = ?$

Problem 3. Calculate the lengths of the following curves $\gamma: [a, b] \to \mathbb{R}^2$:

- (i) $\gamma(t) = (t^2 1, t + 1)$ on [-1, 2].
- (ii) $\gamma(t) = (t^2, t^3)$ on [0, 1].
- (iii) $\gamma(t) = t(\cos t, \sin t)$ on $[0, 2\pi]$.
- (iv) $\gamma(t) = (\sin t, (\sin t)^{3/2})$ on $[0, \pi/2]$.

Problem 4. Calculate the surface area and volume of the funnel formed by revolving $y = e^{-x}$, $x \in [0, b]$, around the x-axis (draw a picture). What happens to the area and volume if $b \to \infty$?

Problem 5. Calculate the volume of the solid obtained by revolving the region between the graphs of $y = e^x$ and $y = e^{-x}$ around the x-axis for $0 \le x \le \ln(4)$ (draw a picture).

Problem 6. Calculate the surface area and volume of the solid generated by revolving the region between the graphs $y = \sqrt{x}$ and y = x around the y-axis (draw a picture).

Problem 7. Determine (and provide a proof) whether the following integrals are finite or not:

- (i) $\int_0^\infty e^{-t^2} dt$. Think of area comparison to some area you know something about...

- (ii) $\int_0^1 \frac{1}{x} dx$ (iii) $\int_1^\infty \frac{2x}{x^{3+8}} dx$. Look at HW 5. (iv) $\int_0^\infty \frac{\sqrt{x}}{x+9} dx$. It is true that eventually $x + 9 \le 9x$ (why? Draw the two be to understand this statement), which should somehow help...think of area comparison...