Homework 5, Honors Calculus II
 Practice Sheet

Problem 1. Calculate the area bounded by the graphs of $y=f(x)$ and $y=g(x)$ in the following scenarios (always draw a picture first):
(i) $f(x)=\sqrt{x}$ and $g(x)=x^{3}$ between their intersections.
(ii) $f(x)=e^{x}$ and $g(x)=e^{-x}$ over the interval $[-1,1]$.
(iii) $f(x)=\ln (2)$ and $g(x)=\ln (x)$ over the interval $\left[\frac{1}{e}, 2\right]$.
(iv) $f(x)=\frac{\ln (x)}{x}$ and $g(x)=-x+1$ from their intersection to $x=e^{2}$.

Problem 2. Calculate the following integrals:
(i) $\int x^{2} e^{-x} d x=$?
(ii) $\int_{1}^{3} x^{3} \ln (x) d x=$?
(iii) $\int x \cos (x) d x=$?
(iv) $\int \frac{1}{x^{3}-x} d x=$?
(v) $\int_{-1}^{1} \frac{x^{7}-x^{11}}{\cos x} d x=$?
(vi) $\int_{0}^{\pi / 4} \tan (x) d x=$?
(vii) $\int \frac{(\ln x)^{3}+5}{x} d x=$?
(viii) $\int_{0}^{1} \frac{x^{3}+2 x^{2}-x+1}{x+1} d x=$?

Problem 3. Calculate the lengths of the following curves $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$:
(i) $\gamma(t)=\left(t^{2}-1, t+1\right)$ on $[-1,2]$.
(ii) $\gamma(t)=\left(t^{2}, t^{3}\right)$ on $[0,1]$.
(iii) $\gamma(t)=t(\cos t, \sin t)$ on $[0,2 \pi]$.
(iv) $\gamma(t)=\left(\sin t,(\sin t)^{3 / 2}\right)$ on $[0, \pi / 2]$.

Problem 4. Calculate the surface area and volume of the funnel formed by revolving $y=e^{-x}, x \in[0, b]$, around the x-axis (draw a picture). What happens to the area and volume if $b \rightarrow \infty$?

Problem 5. Calculate the volume of the solid obtained by revolving the region between the graphs of $y=e^{x}$ and $y=e^{-x}$ around the x-axis for $0 \leq x \leq \ln (4)$ (draw a picture).
Problem 6. Calculate the surface area and volume of the solid generated by revolving the region between the graphs $y=\sqrt{x}$ and $y=x$ around the y-axis (draw a picture).
Problem 7. Determine (and provide a proof) whether the following integrals are finite or not:
(i) $\int_{0}^{\infty} e^{-t^{2}} d t$. Think of area comparison to some area you know something about...
(ii) $\int_{0}^{1} \frac{1}{x} d x$
(iii) $\int_{1}^{\infty} \frac{2 x}{x^{3}+8} d x$. Look at HW 5 .
(iv) $\int_{0}^{\infty} \frac{\sqrt{x}}{x+9} d x$. It is true that eventually $x+9 \leq 9 x$ (why? Draw the two graphs to understand this statement), which should somehow help...think of area comparison...

