Homework 8, M 331.2 Due 11/9/16

Please hand in your home work before class, have it neatly written, organized (the grader will not decipher your notes), stapled, with your name and student ID on top.

Problem 1 (Motion of a pendulum with small elongation). The angle y(t), measured in radiants from the vertical in counter clockwise direction, of a pendulum suspended on a string (rod etc.) of length L (in meters) with pendant of some mass m satisfies the ODE

$$y'' + \frac{g}{L}y = 0$$

where g is the gravitational constant (notice, that the mass m does not appear in the ODE). It is useful to notate $\omega = \sqrt{\frac{g}{L}}$.

- (i) Calculate the solution y(t) by initially elongating the pendulum by $y_0 > 0$ and then releasing it.
- (ii) Calculate the velocity y'(t) (radiants/sec) of the pendulum when it passes the vertical.
- (iii) The frequency $f = \frac{\beta}{2\pi}$ of $\sin(\beta t)$ (or $\cos(\beta t)$) is the number of times per time unit the motion repeats; e.g. if $\beta = 2\pi$ the frequency is f = 1; if $\beta = 5\pi$ the frequency is f = 2.5). Calculate the frequency of the pendulum in terms of g and L.
- (iv) Complete the sentence: If one doubles the length of the pendulum, the frequency
- (v) If you observe a frequency of f = 5, how long is the pendulum?

Problem 2. Consider a spring with spring constant k = 9 on which we attach a mass m = 1 kg. We pull the mass downwards from its resting position by 10 cm and release it. The ODE for this situation is

$$y'' + \gamma y' + 9y = 0$$

where γ is the friction coefficient.

- (i) Calculate the motion y(t) of the mass when the friction coefficient is $\gamma = 10$, $\gamma = 6$ and $\gamma = \sqrt{20}$. Characterize in each case whether the motion is *underdamped* (two distinct real roots of the characteristic polynomial); *overdamped* (complex conjugate roots), *critically damped* (double root), and draw a reasonably accurate graph of your solutions (including units and labels on the axes).
- (ii) Calculate in each of the cases above how long it takes for the motion to have died down to an amplitude of less than $10^{-2}cm$.
- (iii)
- (iv) What is the frequency of the motion in the underdamped case?
- (v) Now insert the mass in some liquid medium and assume you observe oscillatory movement of frequency $f = \frac{\sqrt{5}}{2\pi}$. Determine the friction coefficient γ for this case?

Problem 3. Consider the ODE y'' + 4y' + 5y = 0. Determine the solution which satisfies the initial condition y(0) = 1 and y'(0) = 2 and try to write it in the form $Ae^{\alpha t}\sin(\beta t - \delta)$.

Problem 4. Consider the *inhomogeneous* ODE y'' - 3y' + 2y = 1.

- (i) Guess one solution of this ODE (Hint: what are the constant solutions y(t) = constant?)
- (ii) Find all solutions of the corresponding homogeneous ODE.
- (iii) Find all solutions of the inhomogeneous ODE (recall the inhomogeneous super-position mantra: all solutions of the inhomogeneous linear ODE are given by one solution of the inhomogeneous ODE plus all solutions of the homogeneous ODE. What happens to those solutions as t → ∞?
- (iv) Find the solution with initial condition y(0) = y'(0) = 0.

Problem 5. Write the following complex numbers z in standard form x + iy:

$$z = e^{2+i}$$
, $z = e^{i\pi}$, $z = e^{-2+\frac{\pi i}{2}}$, $z = 2^{i\pi}$

For the last recall the identity $a^b = e^{b \ln a}$ for change of an arbitrary base to base e.

Problem 6. A swing door of mass m = 10 kg on a hinge (modeled on a spring with spring constant k = 10 and friction $\gamma = 20$) is kicked open by an initial speed of 3 m/sec. The ODE for this problem is

$$ny'' + \gamma y' + ky = 0$$

where y(t) measures how far out the door swings at time t.

- (i) Find the solution y(t) of this problem.
- (ii) How much does the door maximally open and how long does it take for that to happen?
- (iii) Draw an accurate (labelled) graph of your solution y(t) and its velocity y'(t), and describe in words the position and velocity of the door motion.
- (iv) How long does it take for the door to come within one centimeter of being closed?
- (v) Will the door ever come back to its closed position?