
Homework 8, Differential Geometry
due 4/21/17

Please hand in your home work before class, have it neatly written, organized (the
grader will not decipher your notes), stapled, with your name and student ID on
top.

Problem 1. In this problem we try to find the critical points (ideally minima)
of the energy functional on curves in the hyperbolic plane. Generally, for any
Riemannian manifold (U, g) the energy functional is given by

E(γ) = 1
2

∫
I

gγ(t)(γ
′(t), γ′(t))dt

for curves γ : I → U . For those who have some rudimentary physics background,
the energy functional is just the total kinetic energy over the trajectory (of some
particle of mass = 1). Thus we are dealing with “free particle motion” in the
geometry determined by g. Physics tells us that free particles travel in such a way
as to minimize the total energy along their trajectories. For instance, if we are
in Euclidean space then the free particle travels along a straight line with uniform
speed. As we have pointed out before, the energy functional is not parameterization
invariant, thus the minimizers come with a god given parameterization (unlike in the
case of the length functional, where the choice of parameterization does not matter).
This means that in computations we are not allowed to make any assumptions on
the parameterization (i.e., we cannot assume arclength parameterization if we are
interested in the actual physics of the situation, and not just in the trace the particle
makes, say, in a cloud chamber).

(i) For the upper half plane model of hyperbolic space (see HW 7) calculate
the ODE a curve γ : I → H2 has to satisfy in order to be a critical point
of the energy functional under compactly supported variations.

(ii) Verify that vertical lines in H2 and circles meeting the x-axis at a right
angle (how parameterized?) are solutions of your ODE.

(iii) Recall that SL(2,R) acts by isometries on H2 via

A · z =
az + b

cz + d

for A ∈ SL(2,R). Show that the energy does not change when a curve γ
is moved by an isometry to A · γ.

(iv) Let V = γ̇ where the variation γs = A(s) · γ is given by a curve s 7→ A(s)
in SL(2,R) with A(0) = I2. In other words, we choose as a variation the
curve γ moved by a 1-parameter family of isometries. Show that whenever
X is a trace free 2 × 2 matrix, then A(s) = exp(sX) ∈ SL(2,R) and
calculate V for the cases

X =

(
1 0
0 −1

)
X =

(
0 1
1 0

)
X =

(
0 1
−1 0

)
If you wonder why exactly those 3 matrices X, verify that they form a
basis of the vector space of trace free 2× 2 matrices.

(v) Now assume γ is a critical point for the energy functional and V comes
from a 1-parameter group of isometries as above. Show that

< V, γ′ >= c < γ, e2 >
2



2

for some constant c ∈ R where e2 = (0, 1) is the second standard basis
vector.

(vi) Use the special V coming from the 3 matrices X above and try to calculate
the critical curves γ. Ideally you should be able to deduce (ii).

Problem 2. Let U ⊂ Rn be an open subset (a local manifold). The vector field
Lie bracket of two vector fields X,Y : U → Rn so defined by

[X,Y ](p) = X(p) · Y − Y (p) ·X p ∈ U
where, for any smooth function f : U → R and vector v ∈ Rn at p ∈ U the notation
v · f := dfp(v) denotes the directional derivative of f at p along v. If X is a vector
field, then X · f : U → R is the function (X · f)(p) = X(p) · f . For a vector valued
function these notations are applied to each component. Thus, in the usual notation
the Lie bracket is

[X,Y ](p) = dYp(X(p))− dXp(Y (p))

for p ∈ U . So, starting with two vector fields X,Y the Lie bracket [X,Y ] gives a
new vector field.

(i) Show that [X,Y ] is skew symmetric bilinear in X and Y over R.
(ii) For smooth functions f, g : U → R show that

[fX, gY ] = fg[X,Y ] + f(X · g)Y − g(Y · f)X

Notice that the product of a function and a vector field is defined pointwise,
i.e., (fX)(p) = f(p)X(p) for p ∈ U .

(iii) Show that the Lie bracket of constant vector fields is zero.
(iv) Calculate a formula of the Lie bracket in terms of the components of the

vector fields in a basis {ei} of Rn, that is if X =
∑n
i=1 ξiei, Y =

∑n
i=1 ηiei

then find the components ζi of [X,Y ] =
∑n
i=1 ζiei.

(v) Show that [[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0. This is called the
Jacobi identity.

(vi) Now let α ∈ Ω1(U,R) be a 1-form on U and X,Y : U → Rn vector fields.
Verify that the exterior derivative can be calculated via

dα(X,Y ) = X · α(Y )− Y · α(X)− α([X,Y ])

where the smooth function α(X) : U → R is given by α(X)(p) := αp(X(p))
for p ∈ U .

Problem 3. Let U := R2 \{0} be the punctured plane and γ the counter clockwise
once traversed unit circle. Show that the map

[α] 7→
∫ 2π

0

αγ(t)(γ
′(t))dt

between the first deRham cohomology group H1
dR(U,R) and R is a linear isomor-

phism. Here [α] with dα = 0 denotes the coset in the abelian group

H1
dR(U,R) =

kernel d : Ω1 → Ω2

image d : Ω0 → Ω1

Convince yourself that this map is well-defined, i.e., independent of the choice of

representative of the coset [α]. In other words, if α = df then
∫ 2π

0
αγ(t)(γ

′(t))dt = 0.


