
Homework 9, Honors Calculus II
11/8/2018

Problem 1. Show that a differentiable function f(x) which satisfies the condition
f ′(x) = f(x) must be of the form f(x) = cex for some constant c ∈ R. Hint: show
that f(x)e−x is constant, by showing that its derivative is zero for all values of x.

Problem 2. Here a purely algebraic way (in contrast to the calculus type proof
given in class using the first problem above) to verify the functional equation of the
exponential function, namely ex+y = exey. For us

ex =

∞∑
n=0

xn

n!

Here some hints: you will have to use the binomial formula (which you probably
have learned in high school, otherwise learn it now)

(x+y)n =

n∑
k=0

(
n

k

)
xkyn−k where

(
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
.

Then you will have to stare at the summands a bit, perhaps interchange sums,
rearrange terms, rename summation indices, and combine binomial coefficients—
this is pretty hard to do, so try this only when you feel under-challenged in the
class...

Problem 3. Using the definition of ax = ex ln a for a > 0 and the properties of ex

and lnx, calculate/verify the following formulas (which you probably have seen in
high school calculus):

(i) (ax)′ = ?
(ii) ln ax = x ln a
(iii) (loga x)′ = ? if loga x denotes the inverse function of ax, that is aloga x = x

and loga(ax) = x. Draw the graphs of the function ax for 0 < a < 1,
a = 1, and a > 1.

(iv) (xx)′ = ?

Problem 4. One version of Zeno’s Paradox is the following: suppose I wish to cross
a room of a certain length. First, of course, I must cover half the distance. Then,
I must cover half the remaining distance. Then, I must cover half the remaining
distance. Then I must cover half the remaining distance...and so on forever. The
consequence is that I can never get to the other side of the room, that is, it would
take infinitely long. Since everyday experience shows that we can actually cross
a room in finite time, something must be wrong with Zeno’s reasoning. Can you
resolve the paradox?

Problem 5. You compound an initial investment of 1 with annual interest rate x
(e.g. x = 0.03 would be a 3% rate) n-times through the year.

(i) Show that your initial investment of 1 grew to (1 + x
n )n after one year.

(ii) Following Euler, use the binomial formula to expand the above expression
and calculate the limit n → ∞ of (1 + x

n )n. What do you get? interpret
your result in terms of compounding.

Problem 6. Use the following ideas to derive a power series expansion for ln(1+x):

(i) Write ln(1 + x) =
∫

? dx.
1



2

(ii) Expand the integrant ? in a geometric series and then integrate term by
term to obtain

ln(1 + x) =

∞∑
k=0

akx
k

for some specific numbers ak which you will find when carrying out those
steps.

(iii) Show that your power series converges as long as |x| < 1. Calculate an
approximation of ln(3/2) by summing the first 6 terms of the power series.
How does this number compare to the value of ln(3/2) you get from your
calculator?

Problem 7. Here an idea of Newton’s who wrote: “All this was in the two plague
years of 1665 and 1666, for in those days I was in the prime of my age for invention,
and minded mathematics and philosophy more than at any other time since”. For
a real number α > 0 consider the power series

∞∑
k=0

(
α

k

)
xk

where, in agreement with the coefficient of the binomial formula, we define(
α

k

)
:=

α(α− 1) · · · (α− k + 1)

k!

Show the following:

(i) If α = n is a positive integer, then the above series is a finite sum. Identify
this sum as an expression you know well.

(ii) If α > 0 is not a natural number, i.e., the series is not a finite sum, show
that the power series converges for 0 ≤ x < 1.

(iii) Extrapolating from (i), it was clear to Newton that

(1 + x)α =

∞∑
k=0

(
α

k

)
xk

holds for any real number α. This generalized binomial formula is engraved
on his tomb in London. Use this formula to approximate

√
3/2 by sum-

ming the first 4 terms of the series and compare this to the ”actual” value
of
√

3/2 given by the calculator.

Problem 8. Determine and provide a proof whether the following series of numbers
converge or diverge:

(i)
∑∞
k=1 n

32−n

(ii)
∑∞
k=1

k
k2+1

(iii)
∑∞
k=1

n2+3n−5
1+n2

(iv)
∑∞
k=0(−1)k = 1− 1 + 1− 1 + 1− 1 + 1 . . .

(v) Write 0.6666666 . . . periodic as an infinite series and show that this series
converges to 2/3.

(vi)
∑∞
n=1

1√
n(n+1)

(vii)
∑∞
n=1

2n+1
(n+1)(2n2+5)

(viii)
∑∞
n=2

1
n ln(n)


