
1. Calculus on normed vector spaces

We introduce and collect the basics of calculus on Rn and more generally on
a normed (finite dimensional) vector space. The latter (slight) generalization will
be helpful since many naturally appearing vector spaces (like the space of linear
maps between Rk and Rl) have no preferred way to be expressed as some Rn. In
principle, those results together with their proofs should be known, at least for Rn.

1.1. Normed vector spaces. Let K be either R or C. A norm on a vector space
V over the field K is a map q : V → R with the properties

q(x) ≥ 0 for all x ∈ K(1)
q(x) = 0 iff x = 0(2)
q(ax) = |a|q(x)(3)

q(x + y) ≤ q(x) + q(y) triangle inequality(4)

where |a| = √
aā for a ∈ K. If a norm on a vector space is chosen we usually refer

to it as a normed vector space. Similar to the absolute value on R one shows that
any norm also satifies the so-called modified triangle inequality

|q(x)− q(y)| ≤ q(x− y) .

Example 1.1. V = Rn with qp(x) = (
∑n

k=1 |xk|p)1/p for p = 1, 2, 3... and q∞(x) =
maxk=1,...,n |xk|. For p = 2 we get the Euclidean norm measuring the length of x.

Example 1.2. Let Vk, k = 1, 2 be finite dimensional normed vector spaces over K
with norms qk and let V = Hom(V1, V2) = {T : V1 → V2 ; T K-linear} be the vector
space of linear maps between V1 and V2. Then

(5) q(T ) := sup
x 6=0

q2(Tx)
q1(x)

= sup
x,q1(x)=1

q2(Tx)

is a norm on V , the operator norm. From the definition it follows easily that one
has the following multiplicative relation

q2(Tx) ≤ q(T )q1(x) .

Example 1.3. Let Vk, k = 1, 2 be finite dimensional normed vector spaces over K
with norms qk . Then V1 × V2 becomes a normed vector space with the norm
q(x1, x2) := q1(x1) + q2(x2)

Example 1.4. There are also non-finite dimensional examples of normed vector
spaces the study of which is done in functional analysis. The most basic example
of such a vector space is the space of sequences V = {(xk)k∈N ; xk ∈ K, xk 6=
0for only finitely many k} whose elements are sequences in K with only finitely
many sequence elements non-zero. Then the obvious analogs of the norms defined
in Example 1.1 give the norms qp(x) = (

∑∞
k=1 |xk|p)1/p for p = 0, 1, 2... and q∞(x) =

maxk=1,...,∞ |xk|. Notice that there are no convergency issues since the sequences
have only finitely many non-zero elements and thus the occuring sums are in fact
finite sums.

Any norm q on a vector space V produces a distance function (or metric) d :
V × V → R via d(x, y) = q(x − y). Thus V becomes a metric space and thus a
topological space. The open sets U ⊂ V are described by the property that to any
point x ∈ U there exists an ε-ball centered at x, Bε(x) = {y ∈ V ; q(y − x) < ε},
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contained entirely in U , i.e., Bε(x) ⊂ U for some ε > 0. The open sets so defined
depend in general on the choice of norm on V . It is an important fact that for finite
dimensional normed vector spaces all norms produce the same open sets. It can
be easily checked that two norms qk, k = 1, 2, on a vector space V give the same
open sets iff there exist constants c > 0, C > 0 such that cq1(x) ≤ q2(x) ≤ Cq1(x)
for all x ∈ V . This is clearly an equivalence relation. Thus we can rephrase that
on a finite dimensional vector space all norms are equivalent. One should be aware
that on a non-finite dimensional vector space two norms need not be equivalent:
just take the norms q1 and q∞ in Example 1.4. Another important feature of finite
dimensional normed vector spaces is that they are complete, i.e., every Cauchy
sequence converges. Again, this is not the case in the non-finite dimensional case.

The usual concepts of convergency, limits, continuity etc. discussed in topology
can now be formulated (and do not depend on the choice of norm in the finite
dimensional situation). For example, the modified triangle inequality implies that
any norm q : V → R is a continuous function. From the multiplicative property
of the operator norm one deduces that any linear map between finite dimensional
normed vector spaces in continuous.

1.2. The derivative. In the sequel all vector spaces are assumed to be finite di-
mensional. We will denote the norm on any vector space V by the symbol |x|. We
develop the basics of calculus on a normed vector space.

Definition 1.1. Let V,W be normed vector spaces, U ⊂ V open and f : U → W a
map (or function, whichever terminology one prefers). f is differentiable at x0 ∈ U
if there exists a linear map T : V → W so that

(6) lim
x→x0

f(x)− f(x0)− T (x− x0)
|x− x0| = 0 .

A useful equivalent formulation is the following

Lemma 1.1. f is differentiable at x0 if there exists a linear map T : V → W and
a function r : U → W with limx→x0 r(x) = 0 such that

f(x) = f(x0) + T (x− x0) + r(x)|x− x0|
for |x − x0| sufficiently small, i.e., f can be approximated near x0 by an affine
(=inhomogeneous linear) map to more then first order.

From this two important facts follow immediately: firstly, if f is differentiable
at x0 then the linear map T is unique. Secondly, if f is differentiable at x0 then
the map f is continuous at x0. To prove the first assertion we put x = x0 + tv for
v ∈ V and t > 0 small. Assuming there are two linear maps T1, T2 we get

T1(v)− T2(v) = (r2(x)− r1(x))|v|
for all v. Taking the limit t → 0 we have x → x0 so that the right hand side
becomes zero. For the second assertion we take the norm on both sides in the
defining equation for differentiability to obtain

|f(x)− f(x0)| = |T (x− x0) + r(x)|x− x0|| ≤ |T (x− x0)|+ |r(x)|x− x0||
≤ (|T |+ |r(x)|)|x− x0|

(7)

where we used properties of the norm and the operator norm. Since limx→x0 r(x) =
0 we obtain the usual ε, δ-characterization of continuity.
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Note that even though the definitions (and calculations) involve a choosen norm,
the property to be differentiable is independent of the norm (since all norms are
equivalent). We introduce the following notation:

if f is differentiable at x0 we denote the unique linear map T by f ′(x0) and call
it the derivative of f at x0. Note that even though we use the same notation as
for 1-variable calculus the derivative of a map in higher dimensions is a linear map
f ′(x0) : V → W . It is educational to compare this defintion to the one where the
domain is an open intervall I ⊂ R: let f : I → Rn be a map (the image of such
a map is a curve in Rn) which is differentiable at some point x0 ∈ I in the above
sense. Thus there exists a linear map f ′(x0) : R → Rn satisfying (6). Since a
linear map is determined by its values on a basis and R has 1 as a canonical “basis
vector” we can identify the linear map f ′(x0) with the vector f ′(x0)(1) ∈ Rn. Now
it follows from (6) that

lim
x→x0

(
f(x)− f(x0)

x− x0
− f ′(x0)(1)) = 0 ,

which is exactly the definition of the derivative of a vector-valued function given
in multivariable calculus (where the vector f ′(x0)(1) is then interpreted as the
“tangent vector” to the curve f in Rn at x0). In the sequel we will always make
this identification if the domain is an open subset of R without further mentioning.

1.3. Directional derivatives and the Jacobi matrix. When computing deriva-
tives the notion of directional derivatives is useful.

Definition 1.2. Let U ⊂ V be open, f : U → W a map and let v ∈ V . The
directional derivative of f with respect to v at x0 ∈ U is defined by

(8) Dvf(x0) = lim
t→0

f(x0 + tv)− f(x0)
t

provided the limit exists.

If f is differentiable at x0 then we conclude from (6) that directional derivatives
of f with respect to any v ∈ V exist and moreover

(9) Dvf(x0) = f ′(x0)(v) .

The converse is false as the example f : R2 → R, f(x, y) = x2y
x2+y2 , f(0, 0) = 0 shows:

f has directional derivatives at (0,0) w.r.t. all v ∈ R2 but f is not differentiable
at (0,0). Thus, as long as a map is differentiable at a point, we can compute its
derivative using (9). In practical calculations one can choose bases v = (v1, ..., vn)
in V and w = (w1, ..., wm) in W and express the linear map f ′(x0) as a matrix
w.r.t. that basis

(10) f ′(x0)(v) = wJ(f, x0) ,

or, using indices,

f ′(x0)(vk) =
m∑

l=1

wlJ(f, x0)l
k , k = 1, ...n .

The matrix J(f, x0) ∈ M(m,n,K) is called the Jacobi matrix of the map f at x0.
Its entry at the k-th column and l-th row

J(f, x0)l
k = Dvk

f l(x0)
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is equal to the directional derivative w.r.t. vk of the l-th component function
f l : U → K of f w.r.t. the basis w, i.e. f =

∑m
l=1 wlf

l. In case V = Rn,W = Rm

one has the standard basis and then the directional derivatives w.r.t. the standard
basis become the usual partial derivatives w.r.t the various “coordinate directions”

Dek
f l(x0) =

∂f l

∂xk
(x0) = ∂kf l(x0)

so that
J(f, x0)l

k = ∂kf l(x0)

is the matrix of all the partial derivatives, as in multivariable calculus.

1.4. Higher order derivatives. A map f : U → W of an open subset U ⊂ V is
called differentiable (on U) if f is differentiable at any point x ∈ U . Thus for each
x ∈ U we have the linear map f ′(x) ∈ Hom(V,W ) and thus we get a map

f ′ : U → Hom(V,W )

which we call the derivative or sometimes the differential of f . From Section 1.1 we
know that Hom(V, W ) is also a normed vector space (e.g. in the operator norm)
so that we can apply our theory to the map f ′. If f ′ is a continuous map then we
say that f is continuously differentiable on U ⊂ V and write

C1(U,W ) := {f : U → W ; f continuously differentiable on U} .

The second derivative of f at x0 ∈ U is defined to be the derivative of f ′ at x0, i.e.,

f ′′(x0) := (f ′)′(x0) ∈ Hom(V,Hom(V, W ))

which now is a linear map from V to Hom(V, W ). From linear algebra we know
that

Hom(V, Hom(V, W )) = Bil(V, W ) ,

where Bil(V, W ) = {b : V ×V → W ; b bilinear} is the vector space of bilinear maps.
The isomorphism above is given by assigning a linear map T ∈ Hom(V, Hom(V,W ))
the bilinear map b(v1, v2) = T (v1)(v2). As before, if f ′ is differentiable at any x ∈ U
we say that f is twice differentiable (on U) and we obtain the second derivative map

f ′′ : U → Hom(V, Hom(V,W )) = Bil(V, W ) .

Again we have a map between normed vector spaces where one can check that the
norm obtained on Bil(V, W ) under the isomorphism with Hom(V,Hom(V, W )) is
given by |b| = supv1 6=0,v2 6=0

|b(v1,v2)|
|v1||v2| . If f ′′ is continuous we call f twice continuously

differentiable and we write

C2(U,W ) := {f : U → W ; f twice continuously differentiable onU} .

The analog of the symmetry of mixed partial derivatives is the following

Lemma 1.2. Let f ∈ C2(U,W ). Then f ′′ : U → Sym2(V, W ) where we denote by
Sym2(V,W ) ⊂ Bil(V,W ) the vector subspace of symmetric bilinear maps satisfying
b(v1, v2) = b(v2, v1).

A fairly efficient way to compute second derivatives is the following: first one
computes the derivative f ′. For any v1 ∈ V the map

U ∈ x → gv1(x) := f ′(x)(v1) ∈ W
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is differentiable (assuming f is twice differentiable). Then the derivative of gv1

yields the second derivative of f via

(11) (gv1)
′(x)(v2) = f ′′(x)(v1, v2) .

Continuing our boot-strapping we inductively define k-th order derivatives

f (k) := (f (k−1))′ : U → Hom(V,Hom(V, ...,Hom(V, W )) = Multk(V,W )

where Multk(V, W ) = {b : V × ... × V → W ; b k-multilinear} is the vector space
of k-multilinear maps. Note that Mult1(V, W ) = Hom(V,W ) and Mult2(V,W ) =
Bil(V, W ). We let

Ck(U,W ) = {f : U → W ; f k-times continuously differentiable on U }
and the above Lemma generalizes: if f ∈ Ck(U,W ) then f (k) ∈ Symk(V, W ) where
Symk(V, W ) ⊂ Multk(V, W ) are those multilinear maps which are symmetric in all
of its arguments, i.e., b(vσ(1), vσ(2), ..., vσ(k)) = b(v1, ..., vk) for all permutations σ :
{1, ..., k} → {1, ..., k}. Finally we let C∞(U,W ) be the intersection of all Ck(U,W ),
i.e., maps which are differentiable of any order or infinitely often differentiable and
shortly called smooth maps.

In multivariable calculus the notion of the gradient of a scalar valued function is
somewhat important. This is to some extend misleading. To define the gradient one
needs more structure on the vector space then just a norm, namely a non-degenerate
symmetric bilinear form (inner product), not necessarily positive definite. Let f :
U → K be differentiable with derivative f ′ : U → Hom(V,K) = V ∗ and let
< , >: V × V → K be an inner product. Then we know from linear algebra that V
and its dual V ∗ are isomorphic via v →< v, − >. Using this isomorphism (which
depends on the choice of inner product !) we define the gradient gradx f ∈ V of f
at x ∈ U by

< gradx f, v >:= f ′(x)(v) , v ∈ V .

Whereas the derivative f ′ is invariantly defined, the gradient function grad f :
U → V depends on the choice of inner product. When dealing with Euclidean
vector spaces, i.e., R-vector spaces with a positive inner product, the inner product
(being positive definite) induces the norm |x| = √

<x, x > and there are no choices
to make. On Rn one has a natural choice of inner product, the dot product, so that
one often does not distinguish between grad f and f ′, at least not in calculus.

1.5. Basic differentiation rules. Without good formulas to differentiate prod-
ucts and compositions of maps the calculation of derivatives using the definition
would be tedious. Like in calculus it follows from the limit properties that the
derivative has the usual linearity properties

(αf)′ = αf ′ , (f + g)′ = f ′ + g′ ,

where f, g : U → W , U ⊂ V open, α ∈ K and clearly (αf)(x) = αf(x), (f +g)(x) =
f(x) + g(x).

Like in calculus we expect that we should be able to use the definition to calculate
derivatives of constant maps, linear maps, bilinear maps and multilinear maps.
Clearly, if f : U → W is a constant map, say f(x) = w for all x ∈ U , then f ′ = 0
and thus all f (k) = 0 for any k ∈ N.

Derivative of a linear map. Let f : U → W be the restriction of a linear
map T ∈ Hom(V,W ) to U ⊂ V . Then it follows from (6) that f ′ = T , i.e.,
f ′(x) = T ∈ Hom(V, W ) for all x ∈ U . In particular, f ′ is a constant map and
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thus from the above consideration f ′′ = 0. Thus f ∈ C∞(U,W ) is infinitely often
differentiable.

Derivative of a bilinear map. Let b : U ×V → W be a bilinear map between
the normed vector spaces U, V, W . Then b′(x, y) ∈ Hom(U × V, W ) is given by

b′(x, y)(u, v) = b(u, y) + b(x, v) .

This follows from the definition of the derivative (6). We see that the map (x, y) →
b′(x, y) is a linear map (check!) between U × V and Hom(U × V,W ). Thus we
know from the above discussion that b′′ must be constant. To explicitely calculate
it we use (11) and obtain

b′′(x, y)((u1, v1), (u2, v2)) = b(u2, v1) + b(u1, v2)

which obviously is independent of (x, y), i.e., constant. Thus the third and all higher
derivatives vanish. A similar calculation for multilinear maps b : V1× ...×Vn → W
gives

b′(x1, ..., xn)(v1, ...vn) =

= b(v1, x2, ..., xn) + b(x1, v2, x3, ..., xn) + ... + b(x1, ..., xn−1, vn) .

With some patience one can also calculate all the higher order derivatives. We see
that b′ is an n − 1-multilinear map if b has been n-multilinear. Thus inductively
b(n) is constant and b(n+1) = 0.

Chain rule. Let V1, V2, V3 be normed vector spaces (always assumed finite
dimensional) with U1 ⊂ V1 and U2 ⊂ V2 open subsets. Let f : U1 → U2 be
differentiable at x ∈ U1 and let g : U2 → V2 be differentiable at f(x) ∈ U2. Then
the composition g ◦ f : U1 → V3 is differentiable at x ∈ U1 and the chain rule

(12) (g ◦ f)′(x) = g′(f(x)) ◦ f ′(x)

holds. Note that the right hand side makes perfect sense as compositions of linear
maps: f ′(x) ∈ Hom(V1, V2) and g′(f(x)) ∈ Hom(V2, V3).

Product rule. Let V1, V2, V3,W be normed vector spaces, U ⊂ V1 open, f :
U → V2, g : U → V3 maps and b : V2×V3 → W bilinear. If f and g are differentiable
at x0 ∈ U then the map b(f, g) : U → W where b(f, g)(x) := b(f(x), g(x)), is
differentiable at x0 and

(13) b(f, g)′(x0)(v) = b(f ′(x0)(v), g(x0)) + b(f(x0), g′(x0)(v))

for all v ∈ V1. To prove this formula we use the chain rule (12) together with the
formula for the derivative of a bilinear map: note that b(f, g) is the composition
b ◦ (f, g) so that

(b ◦ (f, g))′(x0)(v) = b′(f(x0), g(x0))(f ′(x0)(v), g′(x0)(v))

= b(f ′(x0)(v), g(x0)) + b(f(x0), g′(x0)(v)) .

1.6. Inverse and implicit function theorems. Let U1 ⊂ V1, U2 ⊂ V2 be
open subsets of normed vector spaces. A map f : U1 → U2 is said to be a Ck-
diffeomorphism, k ≥ 1, if

(i) f : U1 → U2 is bijective and
(ii) f and f−1 : U2 → U1 are k-times continuously differentiable.
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Note that differentiability implies continuity so that diffeomorphisms are always
homeomorphism and as such preserve all topological properties.

Since f−1 ◦ f = idU1 and f ◦ f−1 = idU2 we deduce from the chain rule

(f−1)′(f(x)) ◦ f ′(x) = idV1 , x ∈ U1

and
(f)′(f−1(y) ◦ (f−1)′(y) = idV2 , y ∈ U2 .

Thus the linear map f ′(x) ∈ Hom(V1, V2) is invertible with inverse (f−1)′(f(x)) ∈
Hom(V2, V1). In particular, V1 and V2 must have the same dimension.

Theorem 1.3 (Inverse function theorem). Let V, W be normed vector spaces of
the same dimension. Let U ⊂ V be open and f : U → W be Ck and assume
that f ′(x0) ∈ Hom(V, W ) is an invertible linear map at some x0 ∈ U . Then there
exist open sets x0 ∈ U1 ⊂ U and f(x0) ∈ U2 ⊂ W so that f : U1 → U2 is a
Ck-diffeomorphism.

We say that a map f : U → W , U ⊂ W open, is a local Ck-diffeomorphism
near x0 ∈ U if there exists an open neighborhood U1 ⊂ U of x0 and an open
neighborhood U2 ⊂ W of f(x0) so that f : U1 → U2 is a Ck-diffeomorphism. If
f : U → W is a local Ck-diffeomorphism near every point in U we call f simply a
local Ck-diffeomorphism (on U). From the above discussion and the inverse function
theorem we deduce

Corollary 1.4. A Ck map f : U → W , U ⊂ V open, is a local Ck-diffeomorphism
near x0 ∈ U if and only if f ′(x0) ∈ Hom(V1, V2) is invertible.

Notice that a map f : U → W can be a local Ck-diffeomorphism ( everywhere
on U) without being a Ck-diffeomorphism as e.g. the map f : R2 → R2, f(x, y) =
(ex cos y, ex sin y) shows. f has f ′(x, y) invertible for all (x, y) but f is neither
injective nor surjective (see exercise).

A standard first application of the inverse function theorem is the implicit func-
tion theorem. First we need to introduce some notation. If f : U1 × U2 → W is a
differentiable map where, as usual, U1 ⊂ V1 and U2 ⊂ V2 are open subsets (of the
normed vector spaces V1, V2) we define analogs of partial derivatives for f :

∂1f(x, y) : = (f ◦ iy)′(x) ∈ Hom(V1,W ) ,

∂2f(x, y) : = (f ◦ ix)′(y) ∈ Hom(V2,W ) ,

where iy : V1 → V1×V2 is the inclusion map iy(x) = (x, y) and ix : V2 → V1×V2 is
the inclusion map ix(y) = (x, y). Like for the usual partial derivatives we see that
∂1f(x, y) is nothing but the derivative of f in “x-direction keeping y constant” and
correspondingly for ∂2f(x, y). Since the derivative of iy(x) = (x, y) is (iy)′(x)(v) =
(v, 0), which is the inclusion map inc1 : V1 → V1 × V2 (and correspondingly for ix)
we obtain from the chain rule

∂kf(x, y) = f ′(x, y) ◦ inck ∈ Hom(Vk,W ) , k = 1, 2 .

This being said we can formulate

Theorem 1.5 (Implicit function theorem). Let V1, V2,W be normed vector spaces,
U1 ⊂ V1, U2 ⊂ V2 open subsets and f : U1 × U2 → W a Ck map. Assume that
∂2f(x0, y0) ∈ Hom(V2,W ) is an invertible linear map for some (x0, y0) ∈ U1 ×U2.
Then there exists an open neighborhood B1 ⊂ U1 of x0 and a Ck map g : B1 → U2
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with g(x0) = y0 satisfying f(x, g(x)) = f(x0, y0) =: z0 for x ∈ B1. Put more
intuitively, the Ck equation f(x, y) = z0 can be locally solved in a Ck manner
explicitly for y = g(x).

Of course, we all have seen this theorem used in calculus when one tries to
solve an equation f(x, y) = 0 on R2 explicitly for y = g(x) as a function of x.
Geometrically this means that we want to write the curve f(x, y) = 0 locally as
a graph y = g(x) of some function g. The implict function theorem tells us that
this can be done locally near points where the partial derivative ∂f

∂y 6= 0. In general
the theorem does not tell you how to find such a map g, it just guarantees its
existence. In this light you should contemplate again the equation of the circle
f(x, y) = x2 + y2 − 1 = 0.

The proof of the implicit function theorem is an easy application of the in-
verse function theorem: we introduce the map F : U1 × U2 → V1 × W given
by F (x, y) = (x, f(x, y)). Since F ′(x0, y0)(v1, v2) = (v1, f

′(x0, y0)(v1, v2) we de-
duce F ′(x0, y0)(v1, v2) = 0 if and only if v1 = 0 and 0 = f ′(x0, y0)(0, v2) =
f ′(x0, y0)(inc2(v2)) = ∂2f(x0, y0)(v2). By assumtion ∂2f(x0, y0) is invertible thus
v2 = 0. This shows that F ′(x0, y0) ∈ Hom(V1 × V2, V1 × W ) is injective. But
dim V2 = dim W , since ∂2f(x0, y0) ∈ Hom(V2,W ) is invertible, thus F ′(x0, y0)
is invertible. By the inverse function theorem F is a local diffeomorphism near
(x0, y0). Hence there exist open neighborhoods Ũ1 ⊂ U1 of x0, and Ũ2 ⊂ U2 of
y0, B1 ⊂ V1 of x0 and B2 ⊂ W of z0 so that F : Ũ1 × Ũ2 → B1 × B2 is a Ck-
diffeomorphism. Denote F−1 = (h1, h2) and define g(x) := h1(x, z0) which is a
Ck-map g : B1 → Ũ1 ⊂ U1. Using F ◦ F−1 = id we get f(x, g(x)) = z0.

Finally, under the assumptions of the implicit function theorem, we obtain the
derivative of the map g by “implicit differentiation”: applying the chain rule to the
equation f(x, g(x)) = z0 we get

∂1f(x, g(x)) + ∂2f(x, g(x)) ◦ g′(x) = 0

from which we deduce

g′(x) = −(∂2f(x, g(x)))−1 ◦ ∂1f(x, g(x)) .

You should check for yourself that the linear maps on the right hand side have the
correct domains and ranges to be composed in the way they are.

1.7. Normal forms of differentiable maps. Recall that the rank of a linear map
T : V → W between vector spaces of dim V = n, dim W = m is defined to be the
dimension of the vector subspace T (V ) = {T (v) ; v ∈ V } ⊂ W given by the image
of the linear map T . In particular, rankT ≤ min{n,m}. If we chose bases in V
and W and express T as a matrix A ∈ M(m,n,K) then rank T = r if and only if A
has an r × r submatrix with non-zero determinant (this follows from the fact that
rankT is also the dimension of the column space of A). Applying row and column
operations to A one shows that T has rank r if and only if there exists bases in
V,W so that the matrix A has the form Ax = (x1, ..., xr, 0, ..., 0)T ∈ Km, x ∈ Kn.
Applying row and column operations is the same as applying invertible linear maps
on the domain and range. Thus, we have characterized linear maps up to linear
isomorphism of domain and range. A similar result, much in the same spirit, holds
for differentiable maps.
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Definition 1.3. We say a differentiable map f : U → W at x0 ∈ U has rank r at
x0 ∈ U if its derivative f ′(x0) ∈ Hom(V,W ) at x0 has rank f ′(x0) = r. We will
adopt the notation rankx0 f := rank f ′(x0). Note that rankx0 f is the same as the
rank of the Jacobi matrix J(f, x0) for any choice of bases.

Theorem 1.6 (Constant rank theorem). Let V, W be normed vector spaces of
dimensions n and m, U ⊂ V an open subset and f : U → W a Ck map. Assume
that f has constant rank r on U , i.e., rankx f = r for all x ∈ U . To x0 ∈ U let
K := ker f ′(x0) ⊂ V and E := image f ′(x0) ⊂ W be respectively the kernel and
image of f ′(x0). Then there exist open neighborhoods B ⊂ U of x0, D ⊂ W of
f(x0) and Ck-diffeomorphisms φ : B → B̃, ψ : D → D̃, where B̃ ⊂ E ⊕ K and
D̃ ⊂ W are open, so that f̃ := ψ ◦ f ◦ φ−1 : B̃ → D̃ ⊂ W is of the form

f̃(y, x) = y

for all (y, x) ∈ B̃ ⊂ E ⊕K. Thus, up to diffeomorphisms of the domain and range,
f looks very simple.

Before we get into the proof of this theorem let us discuss two important special
cases, namely those where either K = 0 or E = W .

Definition 1.4. A Ck map f : U → W , U ⊂ V open, is called a Ck immersion
(submersion) at x0 ∈ U if f ′(x0) ∈ Hom(V,W ) is injective (surjective). We call
f a Ck-immersion (submersion) on U if f is a Ck-immersion (submersion) at all
points in U .

Notice that f ′(x0) is injective (surjective) if and only if its rank is maximal, i.e.
rankx0 f = max(dim V, dim W ), and dimV ≤ dim W (dimV ≥ dim W ) which is
the same as K = ker f ′(x0) = 0 (E = image f ′(x0) = W ). In case dim V = dim W
we have that f ′(x0) is bijective, i.e., f is a local Ck-diffeomorphim near x0. In
this sense the notion of an immersion (submersion) generalizes the one of a local
diffeomorphism.

Next we note that if f has maximal rank at a point x0 ∈ U then f has that same
maximal rank in an open neighborhood B ⊂ U of x0. This follows from the fact that
if the Jacobi matrix J(f, x0) has an r× r submatrix with non-zero determinant, by
continuity of the determinant function and the continuity of the map x → J(f, x)
(f is Ck, k ≥ 1!), this same submatrix must have non-zero determinant in an open
neighborhood of x0, hence the rank cannot get smaller in this neighborhood (this
is usually expressed by the phrase “the rank is lower semi-continuous”). Since we
assumed the rank at x0 to be maximal, it cannot get larger either, so it must stay
constant in that neighborhood. Thus, if f is an immersion (submersion) at a point
x0 ∈ U then f is an immersion (submersion) in some neighborhood of that point.
We can thus apply the constant rank theorem 1.6 to immersions (submersions). We
shall use the same notation as in that theorem.

Theorem 1.7 (Immersion theorem). Let f : U → W be a Ck-immersion at x0 ∈ U
and let E = image f ′(x0). Then there exists open neighborhoods B ⊂ U of x0,
D ⊂ W of f(x0) and Ck-diffeomorphisms φ : B → B̃, ψ : D → D̃, where B̃ ⊂ E

and D̃ ⊂ W are open, so that f̃ := ψ ◦ f ◦ φ−1 : B̃ → D̃ ⊂ W is of the form

f̃(y) = y

for all y ∈ B̃ ⊂ E. Thus, up to Ck-diffeomorphisms of the domain and range, f is
the restriction of the inclusion map inc : E → W , inc(y) = y.
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Theorem 1.8 (Submersion theorem). Let f : U → W be a Ck-submersion at
x0 ∈ U and let K = ker f ′(x0). Then there exist open neighborhoods B ⊂ U of
x0, D ⊂ W of f(x0) and Ck-diffeomorphisms φ : B → B̃, ψ : D → D̃, where
B̃ ⊂ E ⊕K and D̃ ⊂ W are open, so that f̃ := ψ ◦ f ◦ φ−1 : B̃ → D̃ ⊂ W is of the
form

f̃(y, x) = y

for all (y, x) ∈ B̃ ⊂ E ⊕K. Thus, up to diffeomorphisms of the domain and range,
f is the restriction of the projection map pr : E ⊕K → E, pr(y, x) = y.

Notice that both theorems contain the inverse function theorem 1.3 as the special
case when f ′(x0) is invertible. The proofs of the last two theorems are immediate
applications of the constant rank theorem 1.6 and the discussion above: f being
an immersion (submersion) at x0 means that rankx0 f = r is maximal and thus
constant rankx f = r for all x in an open neighborhood B ⊂ U of x0. We can now
apply Theorem 1.6 keeping in mind that in the immersion case K = 0 and in the
submersion case E = W .

From the submersion theorem we immediately deduce the following useful result
whose proof is left as an exercise.

Corollary 1.9. Let U ⊂ V be open and f : U → W be a Ck-submersion. Then f
is open, i.e., the image f(B) of every open set B ⊂ U is open in W.

We conclude with the proof of the constant rank theorem. For notational ease we
will ommit the attribute Ck. Let us choose direct summands H ⊂ V and F ⊂ W
so that V = H ⊕K and W = E ⊕ F and write f = (f1, f2) : U → E ⊕ F = W and
x = (x1, x2) ∈ V = H⊕K. We first construct the domain diffeomorphism: consider
the map φ : U → E ⊕K defined by φ(x1, x2) = (f1(x1, x2), x2). Its derivative at
x0 is given by φ′(x0)(v) = (f ′1(x0)(v), v2) for v = (v1, v2) ∈ H ⊕K = V . Whence
φ′(x0)(v) = 0 if and only if v2 = 0 and f ′1(x0)(v1) = 0. Since f1 = prE ◦ f ,
with prE : W → E the projection onto E along F , the chain rule gives us f ′1(x0) =
prE ◦f ′(x0) where we used pr′E(x0) = prE (compare to the section on the derivative
of a linear map). Thus we have

f ′1(x0)(v) = prE ◦ f ′(x0)(v) = f ′(x0)(v) ,

where the last equality is implied by the fact that E = image f ′(x0). Since any
linear map is injective on any complementary subspace of its kernel we deduce
from

0 = f ′1(x0)(v1) = f ′(x0)(v1) , v1 ∈ H

that v1 = 0. Thus φ′(x0) ∈ Hom(V, E⊕K) is an injective linear map. On the other
hand the dimension formula for linear maps dim image f ′(x0) + dim ker f ′(x0) =
dim V gives dim V = dim E⊕K. Thus φ′(x0) is bijective and by the inverse function
theorem 1.3 a local diffeomorphism near x0, i.e., there exist open neighborhoods
B ⊂ U of x0 and B̃ ⊂ E ⊕ K of φ(x0) = (f1(x0), (x0)2) so that φ : B → B̃ is a
diffeomorphism. Now let (y1, x2) = φ(x1, x2) ∈ B̃. Then

(14) f ◦ φ−1(y1, x2) = f(x1, x2) = (f1(x1, x2), f2(x1, x2)) = (y1, h(y1, x2))

where we used the defintion of φ(x1, x2) = (f1(x1, x2), x2) and put h = f2 ◦ φ−1 :
B̃ → F .
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Our final task will be to construct a local diffeomorphism of the range W which
will make h = 0. Notice that so far we have not used the fact that the rank of f ′(x)
is constant on U . The derivative of f ◦ φ−1 is given by

(15) (f ◦ φ−1)′(z)(w, v) = (w, h′(z)(w, v)) = (w, ∂1h(z)(w) + ∂2h(z)(v))

for (w, v) ∈ E ⊕ K and z ∈ B̃. From (f ◦ φ−1)′(z) = f ′(φ−1(z)) ◦ (φ−1)′(z), the
assumtion that f ′(x) has constant rank r = dim E on B ⊂ U and the fact that
(φ−1)′(z) is a linear isomorphism we obtain that (f ◦ φ−1)′(z) has constant rank
r on B̃ ⊂ E ⊕K. Thus dim image(f ◦ φ−1)′(z) = r. From (15) we have for each
z ∈ B̃

image(f ◦ φ−1)′(z) = {(w, ∂1h(z)(w)) ; w ∈ E} ⊕ {(0, ∂2h(z)(v)) ; v ∈ K} .

Since dim{(w, ∂1h(z)(w)) ; w ∈ E} = r we deduce ∂2h(z)(v) = 0 for all v ∈ K and
z ∈ B̃. Note that by shrinking B̃ we may assume that B̃ = B̃1 × B̃2 ⊂ E ⊕K with
B̃1 ⊂ E and B̃2 ⊂ K open and connected (in fact, we could choose them to be ε-
neighborhoods). For z = (z1, z2) ∈ B̃ we have ∂2h(z)(v) = (h ◦ inc2)′(z2)(v), where
inc2 : B̃2 → B̃ is the inclusion map, and thus ∂2h(z)(v) = 0 implies (h◦inc2)(z2) = c

constant on B̃2. Hence h(z1, z2) = h(z1) does not depend on z2 ∈ B̃2 and we define
the map ψ : B̃1 × F → W by ψ(y1, y2) = (y1, y2 − h(y1)). From ψ′(y)(w) =
(w1, w2 + h′(y1)(w1)) we deduce that ψ is a local diffeomorphism on the open
subset B̃1 × F ⊂ W which contains the point f(x0) since B̃1 contains the point
f1(x0). Thus there exist open neighborhoods D ⊂ B̃1 × F of f(x0) and D̃ ⊂ W

of ψ(f(x0)) on which ψ : D → D̃ is a diffeomorphism. Note that continuity of
f implies that f−1(D) ∩ B is an open neighborhood of f(x0). Hence we may
assume that f(B) ⊂ D (by replacing B with f−1(D)∩B). It remains to check that
ψ ◦ f ◦ φ−1, the compositions now being well-defined, has the desired property. If
(z1, z2) ∈ B̃ ⊂ E ⊕K then

ψ ◦ f ◦ φ−1(z1, z2) = ψ(z1, h(z1)) = (z1, h(z1)− h(z1)) = (z1, 0) = z1 ∈ E ⊂ W ,

where we used (14) and the definition of φ.
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2. Submanifolds of normed vector spaces

Submanifolds are the natural generalizations of curves and surfaces in 3-space
which we encounter in multivariable calculus. They also will provide the link to
abstract manifolds.

2.1. Submanifolds described by local equations. In what follows the letters
V,W will denote finite dimensional normed vector spaces.

Definition 2.1. Let M ⊂ V be a subset of V . A point p0 ∈ M is said to be a
Ck-smooth point of dimension m in M if there exists an open neighborhood U ⊂ V
of p0 in V and a Ck-map g : U → Ṽ , dim Ṽ = dim V −m, which is a submersion
at p0 so that

M ∩ U = g−1(0) = {p ∈ U ; g(p) = 0} .

Since a submersion at p0 is always a submersion on an open neighborhood of p0

we might equally well have defined a smooth point by requiring the existence of a
Ck-submersion g : U → Ṽ with M ∩ U = g−1(0). Sometimes we will refer to g as
a defining function for M .

The subset M ⊂ V is called a Ck-submanifold of dimension m of V if all points
p ∈ M are Ck-smooth points of dimension m. We write dim M = m and call
codim M := dimV −m the codimension of M in V .

If we do not want to emphazise the degree of differentiablility k ≥ 1 and in the
case of k = ∞ we will simply say “smooth point” and “submanifold”. Let us look
at some examples:

Example 2.1. Every point x ∈ V is a zero dimensional submanifold: its defining
function is g(x) = x− x0.

Example 2.2. On the other extreme every open subset M ⊂ V is a submanifold of
codimension zero: the defining function is the zero map on M with range R0 = {0}.
Example 2.3. Let g : R2 → R be the map g(x1, x2) = x2

1−x2. Then g′(x)(v1, v2) =
2x1v1 − v2, i.e., g′(x) = (2x1,−1) w.r.t. the standard basis. Hence rank g′(x) = 1
everywhere on R2 and thus g is a submersion on R2. By the above definition
M = g−1(0) = {x ∈ R2 ; x2 = x2

1} is a 1-dimensional submanifold of R2.

Perhaps slightly more interesting is the following

Example 2.4. Let <, >: V × V → R be a non-degenerate symmetric bilinear form
and consider M = {x ∈ V ; < x, x >= 1}. We will show that M is a submanifold
of codimension 1 in V . A defining function for M is g(x) =< x, x > −1 which
has derivative g′(x)(v) = 2 < x, v > for x, v ∈ V . Since <,> is non-degenerate for
x 6= 0 there always is some v 6= 0 with < x, v > 6= 0. Thus g′(x) 6= 0 for x 6= 0 ,i.e.,
rank g′(x) = 1 for x 6= 0 which is to say that g : V \{0} → R is a submersion. Since
M ⊂ V \ {0} we see that M is a submanifold of codimension 1.

It might be constructive to remind ourselves that we can always chose a basis
v = (v1, ..., vn) in V so that the matrix (< vi, vj >) = diag(1, ..., 1,−1, ...,−1) =:
Is,n−s has s many +1’s and n − s many −1’s in the diagonal. On V = Rn with
the standard basis the inner product given by Is,n−s is usually called a Lorentzian
inner product of signature (s, n−s), s ∈ {0, ..., n} and M is referred to as a Lorentz
sphere. Of course, the case s = 0 gives the standard Euclidean inner product and
M is just the standard sphere. As an exercise you should calculate and draw the
various Lorentz spheres in R2 and R3.
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Example 2.5. If M ⊂ V is a submanifold and O ⊂ M is an open set (in the subspace
topology) then O ⊂ V is a submanifold with dimO = dim M . This follows at once
from the definition and the fact that O = M ∩ U with U ⊂ V open.

In explicit examples we often have an obvious defining function for our canditate
submanifold M . It may happen that this function is not a submersion but only has
constant rank. This turns out to be sufficient for M to still be a submanifold.

Theorem 2.1. Let g : V → W be a map and denote M = g−1(0). Assume that
there exists an open neighborhood U ⊂ V containing M ⊂ U on which g : U → W is
a Ck-map of constant rank. Then M is a submanifold of dim M = dim V − rank g.

Note that this theorem contains two special cases: if the map g is a submersion
at points p ∈ M then g is a submersion in an open neighborhood of V near p. The
union of those neighborhoods over M give an open set U ⊃ M on which g is a
submersion and thus of constant rank, namely rank g = dimW . We then recover
what we already knew that is, M is a submanifold of dimM = dim V −dim W . On
the other hand, if g is an immersion at points of M then (by the same reasoning)
there is an open neighborhood U ⊃ M on which g is an immersion and thus of
constant rank dim V . Since g is locally injective g−1(0) consists of isolated points
which, according to the first example, is a submanifold of dimension zero (agreeing
with the dimension formula of the theorem).

Proof. We have to show that every point p0 ∈ M is a smooth point of dimension
dim V − rank g. Let E = image g′(p0) and K = ker g′(p0). Then the constant rank
theorem 1.6 gives open neighborhoods B ⊂ U of p0 and D ⊂ W of g(p0) = 0 and
diffeomorphisms φ : B → B̃, ψ : D → D̃ where B̃ ⊂ E ⊕K and D̃ ⊂ W are open,
so that g̃ = ψ ◦ g ◦ φ−1 is of the form g̃(z1, z2) = (z1, 0) ∈ E ⊕ K. Consider the
Ck-map h : B → E given by h(p) = g̃1(φ(p)). Since rank g = dimE we also have
rank g̃ = dim E ( they differ by diffeomorphisms) and thus rankh = dim E. The
latter says that h : B → E is a submersion. Moreover h−1(0) = (ψ ◦ g)−1(0) =
(g|B)−1(0) = B ∩ M which says that h is a defining function for M near p0 and
whence p0 is a smooth point of dimension dim V − rank g. ¤

Another useful observation is that the inverse image of a submanifold under
a submersion is again a submanifold (this is generalization of the fact that the
inverse image of a point under a submersion is a submanifold, which follows from
the definition of a submanifold). We leave the proof as an exercise and just state
the result:

Theorem 2.2. Let g : V → W be a Ck-map and let N ⊂ W be a submanifold. If
g is a submersion at all points in M := g−1(N) ⊂ V then M is a submanifold of
V . The dimension of M is dim M = dim V −dim W +dim N = dim V/W +dim N
and its codimension is codim M = codim N .

2.2. Submanifolds described by local parametrizations. An important fea-
ture of submanifolds is that they can locally be “parametrized”. This will allow us
to extend the notions of differentiability to functions defined on submanifolds and
also motivate the notion of an “abstract manifold”. We already know from calculus
that a curve in the plane can either be given implicitly as the zero set of a function
or it can be given as a parametrized curve. Our submanifolds so far are defined
“implicitly” by defining functions. We now show that we could have also defined
them in terms of “local parametrizations”.
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Theorem 2.3. Let M ⊂ V and p0 ∈ M . Then p0 is a smooth point of dimension
m if and only if there exists an injective immersion f : D → V , where D ⊂ W is
an open subset of a normed vector space W of dimension m, such that f(D) ⊂ M
is an open neighborhood of p0 ∈ M (in the subspace topolgy of M ⊂ V ). We call
such f a local parametrization of M near p0. By translating in W we may always
assume f(0) = p0.

Parametrization Theorem. If p0 ∈ M is a smooth point of dimension m then there
exists an open neighborhood U ⊂ V of p0 and a submersion g : U → Ṽ , dim Ṽ =
dim V −m, with g−1(0) = M ∩ U . By the submersion theorem 1.8 there are open
neighborhoods B ⊂ U of p0, D ⊂ Ṽ of 0 and diffeomorphisms φ : B → B̃, ψ : D →
D̃, with B̃ =⊂ K × Ṽ and D̃ ⊂ Ṽ open neighborhoods of 0 (we may assume, after
possible translations, that φ(p0) = 0 and ψ(0) = 0) so that g̃ = ψ ◦g ◦φ−1 : B̃ → D̃
has g̃(x, y) = y. As usual we have put K = ker g′(p0) ⊂ V . We can also assume
that B̃ = B̃1 × B̃2 with B̃1 ⊂ K and B̃2subsetW open neigborhoods of 0. Now
define f : B̃1 → V by f(x) = φ−1(x, 0). Clearly, f is an injective immersion and

f(B̃1) = ψ−1(B̃1 × {0}) = ψ−1(g̃−1(0)) = (g|B)−1(ψ−1(0)) = (g|B)−1(0) = M ∩B

which says that f(B̃1) is open in the subspace topology of M . Since dimK +
rank g′(p0) = dim K + dim Ṽ = dim K + dim V −m = dim V we have dimK = m
so that f is defined on an open neighborhood of 0 of the m-dimensional normed
vector space K.

To prove the converse let f : D → V , D ⊂ W open, be an injective immersion
with f(D) = U ∩ M , U ⊂ V open, and f(0) = p0. We need to show that p0 ∈
M is a smooth point of dim W . By the immersion theorem 1.7 there are open
neighborhoods 0 ∈ O ⊂ D, p0 ∈ B ⊂ U and diffeomorphisms φ : O → Õ, ψ :
B → B̃ where Õ ⊂ E = image f ′(0) ⊂ V , B̃ ⊂ V are open, so that f(O) ⊂ B and
f̃ = ψ ◦ f ◦ φ−1 is the restriction of the inclusion map inc : E → E × F = V to
Õ ⊂ E. Here F ⊂ V is a direct summand of E in V and B̃ = B̃1 × B̃2 ⊂ E × F
which we may always assume. Now let B̃′ = Õ × B̃2 and put B′ = ψ−1(B̃′). Then
f(O) = B′ ∩M since f is injective. Define g : B′ → B̃2 ⊂ F by g = pr2 ◦ ψ where
pr2 : Õ × B̃2 → B̃2. Then g is a submersion on B′, since pr2 is one and ψ is a
diffeomorphism. Moreover, p0 ∈ B′ and

g−1(0) = ψ−1(Õ × {0}) = f(φ−1(Õ)) = f(O) = B′ ∩M .

Finally B̃2 ⊂ F and dim F = dim V − dim E = dimV − dim W so that p0 ∈ M is
a smooth point of dimension dim W . ¤

As an immediate Corollary we obtain

Corollary 2.4. M ⊂ V is an m-dimensional submanifold if and only if near each
point p ∈ M there exists a local parametrization f whose domain is an open subset
of some dim V −m-dimensional normed vector space.

In principle we now could develop calculus on submanifolds. As a first step
towards this we need the notion of differentiability of a function on a submanifold
M ⊂ V . Of course, this notion should be compatible with the one we already have
on open sets (which are submanifolds as well) and we expect that restrictions of
differentiable functions on V to M should be differentiable.
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Definition 2.2. Let M ⊂ V be a Ck-submanifold and h : M → Ṽ a map into
some normed vector space. We say h is k-times differentiable, k ≥ 1, or briefly Ck,
if for all local parametrizations f : D → M of M we have that h ◦ f : D → Ṽ is a
Ck-map.

In many applications the maps we encounter are only defined on an open subset
O ⊂ M . Those are submanifolds (of the same dimension then M) and thus we can
apply the above definition. This comes down to checking differentiablilty of h ◦ f
for those local parametrizations f of M whose images are contained in O. Note
that any local parametrization f : D → M of M whose image intersects O ⊂ M
gives rise to a local parametrization (again called) f : D ∩ f−1(O) → O of O. We
only have to see that D ∩ f−1(O) is open in D ⊂ W : but O = M ∩ U with U ⊂ V
open and since f(D) ⊂ M we have f−1(O) = f−1(U) which is open in W .

In order not to have to check differentiability for all local parametrizations we
need

Lemma 2.5. Let M ⊂ V be a Ck submanifold and let fi : Di → M be two local
parametrizations with Di ⊂ Wi. Then

f−1
2 ◦ f1 : f−1

1 (f1(D1) ∩ f2(D2)) → f−1
2 (f1(D1) ∩ f2(D2))

is a Ck-diffeomorphism.

The important consequence of this lemma is

Corollary 2.6. Let M ⊂ V be a Ck submanifold, h : M → Ṽ a map and let
fi : Di → M be two local parametrizations with Di ⊂ Wi. Then h ◦ f1 is Ck if and
only if h ◦ f2 is Ck. Thus it suffices to check differentiability of h only w.r.t. some
family of local parametrizations whose images cover M .

The corollary follows immediately from lemma 2.5: h ◦ f1 = (h ◦ f2) ◦ (f−1
2 ◦ f1).

We now come to the proof of lemma 2.5:

Proof. Since fi(Di) ⊂ M are open we get by the arguments above on restrictions
of parametrizations to open subsets of M that f−1

i (f1(D1) ∩ f2(D2)) are open in
Di ⊂ Wi. Shrinking Di to f−1

i (f1(D1)∩f2(D2)) we may assume f1(D1) = f2(D2) =
U ∩ M . Since both fi are injective they are bijective onto their images and thus
f−1
2 ◦ f1 is bijective with inverse f−1

1 ◦ f2. It suffices to show that f−1
2 ◦ f1 is Ck

since switching the roles of f1 and f2 will also show that f−1
1 ◦f2 is Ck. To x0 ∈ D1

the immersion theorem 1.7 applied to f1 gives open subsets D ⊂ D1, B ⊂ U and
diffeomorphisms φ : D → D̃ ⊂ E, ψ : B → B̃ ⊂ V , where as usual E = image f ′1(0),
so that ψ◦f1◦φ−1 = inc : D̃ → D̃×B̃2. Here we assume as before that B̃ = D̃×B̃2

with B̃2 ⊂ F open and F a direct summand of E in V . Then f1(D) = B∩M . Now

f−1
2 ◦ f1 = f−1

2 ◦ (ψ−1 ◦ inc ◦ φ) ,

but the map ψ ◦ f2 : D′ → B̃, where D′ = f−1
2 (B) ⊂ D2 is open, takes values in

D̃ × {0} and as such is a local Ck-diffeomorphism. Thus its inverse (ψ ◦ f2)−1 :
D̃ → B′ is Ck and we can rewrite

f−1
2 ◦ f1 = (ψ ◦ f2)−1 ◦ φ

which is Ck as the composition of Ck maps. ¤
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An obvious way to get differentiable maps on a submanifold M ⊂ V is by
restricting differentiable maps of V (or of an open neighborhood U ⊃ M in V ) to
M : if h : U → Ṽ is Ck and f : D → M ⊂ U ⊂ V is a local parametrization then

(h|M ) ◦ f = h ◦ f : D → Ṽ

is Ck as the composition of Ck-maps. It is left as an exercise that locally any
Ck map on M is obtained this way which in particular implies that a Ck-map
h : M → W is continuous (in the subspace topology of M).

If f : D → M ⊂ V is a local parametrization then O := f(D) ⊂ M is open
and f−1 : O → D ⊂ W is Ck since f−1 ◦ f = id|D is Ck (here we used f as the
parametrization w.r.t. which we check differentiability of f−1). We call the inverse
map f−1 : O → D ⊂ W of a local parametrization f : D → M a local chart or local
coordinate for M and O the chart or coordinate domain . Since f−1 : O → D ⊂ W
is continuous f (and f−1) is a homeomorphism.

If M ⊂ V is an open subset then it has the (global) parametrization id|M : M →
M . Thus a map h : M → Ṽ is Ck (definition 2.2) if and only if h◦id|M = h : M → V

is Ck. Thus the notion of differentiablility on submanifolds coincides for open
subsets with the usual notion of Ck.

From the above discussions we see that an m-dimensional Ck-submanifold M ⊂
V admits an open covering {Oi ; i ∈ I} by chart domains with chart maps φi :
Oi → Di. The Di ⊂ Wi are open subsets of m-dimensional normed vector spaces
Wi and the φi are homeomorphisms. The chart transition functions or coordinate
transition functions

φi ◦ φ−1
j : φj(Oi ∩Oj) → φi(Oi ∩Oj)

between the open subsets φj(Oi ∩ Oj) ⊂ Wj and φi(Oi ∩ Oj) ⊂ Wi are Ck-
diffeomorphisms. As you can see, none of the properties listed refers to the sur-
rounding space V (except the notion of M being a submanifold). In the next chapter
we will use exactly those properties to define the notion of an abstract Ck-manifold.

Example 2.6. A standard way to parametrize the sphere Sn(r) = {x ∈ Rn+1 ; |x|2 =
r2} of radius r > 0 in Rn+1 is by the inverse stereographic projection maps. Recall
that by example 2.4 Sn(r) ∈ Rn+1 is a submanifold of dimension n (take <, >
to be the standard dot-product on Rn+1 scaled by 1/r2). We define two maps
f± : Rn → Rn+1 by

f±(x) = (
2xr2

|x|2 + r2
,±r(|x|2 − r2)

|x|2 + r2
) .

You should check that f± are injective immersions with images image f± = Sn(r)\
{±ren+1} which are both open in Sn(r). The corresponding chart maps φ± are the
stereographic projections from the “north pole” ren+1 and the “south pole” −ren+1

onto the equatorial hyperplane Rn × {0}. You should compute the coordinate
transition function.

A map h : M1 → M2 between two Ck-submanifolds Mi ⊂ Vi is Ck if it is a
Ck-map regarded as a map h : M1 → V2. We expect that composing h by any local
chart map φ of M2 the resulting map φ ◦ h is Ck:

Lemma 2.7. Let h : M1 → M2 be a map between two Ck-submanifolds Mi ⊂ Vi.
Then h is Ck as a map h : M1 → V2 if and only if for any local parametrization
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f : D → M2 ⊂ V2, D ⊂ W2 open, the map f−1 ◦ h : h−1(f(D)) → D ⊂ W2 is Ck

(in the sense of definition 2.2).

Proof. Obviously, if f−1 ◦ h : h−1(f(D)) → D ⊂ W2 is Ck then f ◦ f−1 ◦ h = h is
Ck as a map into V2 since f is. The converse can be most easily seen by recalling
that f−1 : f(D) → D ⊂ W2 is locally the restriction of a Ck-map φ defined in some
open neighborhood U ⊂ V2 of a point in f(D) to f(D) ∩ U . ¤

2.3. The tangent bundle of a submanifold. Even though we now understand
the notion of a differentiable function on a submanifold M ⊂ V there is still a lot
missing for an effective calculus on submanifolds. The obvious first thing to look
at is the analog of the derivative which will be the last concept we are going to
introduce on submanifolds per se. It leads naturally to the notion of the tangent
bundle. This will give us an explicit example on which we can base our intuition
when developing the abstract manifold setup.

Definition 2.3. Let M ⊂ V be a subset. To p ∈ M the subset

TpM := {v ∈ V ; there exists ε > 0 and a Ck-curve γ : (−ε, ε) → M

with γ(0) = p and γ′(0) = v}
is called the Ck-tangent space (or simply the tangent space) of M at p ∈ M .
Elements v ∈ TpM are called tangent vectors of M at p.

Unless p ∈ M is a smooth point of M we do not expect this set to have much
structure.

Theorem 2.8. Let M ⊂ V and assume that p0 ∈ M is a Ck-smooth point of
dimension m. Then:

(i) Tp0M ⊂ V is a vector subspace of dimension m.
(ii) If g : U → Ṽ is a defining function for M near p0 then Tp0M = ker g′(0).
(iii) If f : D → M is a local parametrization of M near p0 with f(x0) = p0

then Tp0M = image f ′(x0).

The affine space p0 + Tp0M ⊂ V is what we usually draw in pictures as the
“geometric” tangent space.

Example 2.7. Consider the sphere w.r.t. a (not necessarily positive definit) in-
ner product <,>: V × V → R given by M = {x ∈ V ; < x, x >= 1} (com-
pare example 2.4). We have one defining function g(x) =< x, x > −1 which has
g′(x)(v) = 2 < x, v > and so

TxM = ker g′(x) = {v ∈ V ; < x, v >= 0} .

In the case <,> is the usual dot product in V = Rn this says that the tangent space
at a point x of the sphere consits of all the vectors perpendicular to the “radius”
vector x.

Proof. (i) follows from either (ii) or (iii). Let us start with the latter: first we show
that Tp0M ⊂ image f ′(x0). Let v = γ′(0) for some Ck-curve γ : (−ε, ε) → M .
Since γ is continuous we may assume that image γ ⊂ f(D). From lemma 2.7
c = f−1 ◦ γ : (−ε, ε) → D is a Ck-curve in D with c(0) = x0. Putting X = c′(0) we
obtain

f ′(x0)(X) = (f ◦ c)′(0) = γ′(0) = v
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so that v ∈ image f ′(x0). To show that image f ′(x0) ⊂ Tp0M we take γ(t) =
f(x0 + tX), then γ : (−ε, ε) → M is a Ck-curve in M with γ(0) = p0 and γ′(0) =
f ′(x0)(X).

To verify (ii) let γ : (−ε, ε) → M be a Ck-curve in M with image γ ⊂ U , γ(0) = p0

and γ′(0) = v. Then g ◦ γ = 0 and differentiating this we get g′(x0)(v) = 0. Thus
Tp0M ⊂ ker g′(p0). From (iii) we know that Tp0M = image f ′(x0) which is a
rank f ′(x0) = m dimensional vector subspace of V . Since dim ker g′(p0) = m we
conclude Tp0M = ker g′(p0). ¤

Definition 2.4. Let M ⊂ V be a Ck-submanifold. Then

TM := {(p, v) ∈ M × V ; v ∈ TpM} ⊂ V × V

is called the tangent bundle of M .

Example 2.8. Let us look at the case where M ⊂ V is an open subset. Then
TpM = V for all p ∈ M and thus TM = M × V .

Theorem 2.9. Let M ⊂ V be a Ck-submanifold of dim M = m wit k ≥ 2. Then
TM ⊂ V × V is a Ck−1-submanifold of dim TM = 2m.

Proof. We show that every point (p, v) ∈ TM is a Ck−1-smooth point of dimension
2m by constructing local parametrizations from local parametrizations f : D → M ,
D ⊂ W open, of M . The idea is that locally M “looks like” the open set D ⊂ V
and thus TM “looks like” D ×W . Let us carry this idea out and define

Φ : D ×W → TM Φ(x, ξ) = (f(x), f ′(x)(ξ)) .

Then Φ is well defined since we know from theorem 2.8 that f ′(x)(ξ) ∈ Tf(x)M .
We have to show that Φ is an injective immersion whose image Φ(D×W ) ⊂ TM is
open in the subspace topology TM ⊂ V ×V . If Φ(x, ξ) = Φ(y, η) then f(x) = f(y)
and f ′(x)(ξ) = f ′(y)(η). Since f is injective the former gives x = y. But f is also
an immersion, i.e. f ′(x) is injective, so that the latter implies ξ = η. Next we show
that Φ is an immersion by computing

Φ′(x, ξ)(η1, η2) = (f ′(x)(η1), f ′′(x)(ξ, η1) + f ′(x)(η2)

where (x, ξ) ∈ D ×W and (η1, η2) ∈ W ×W . From this expression together with
the fact that f ′(x) is injective we immediately get kerΦ′(x) = 0. Finally

imageΦ =
⋃

x∈D

{f(x)} × Tf(x)M =
⋃

p∈f(D)

{p} × TpM = (U × V ) ∩ TM

where f(D) = U ∩M with U ⊂ V open. This shows that image Φ is an open subset
of TM . Clearly, Φ is Ck−1 if f was Ck and dim TM = 2 dim W = 2 dim M . ¤

The local parametrizations of TM constructed above are sometimes called bun-
dle parametrizations and their inverses bundle charts. You should calculate their
transition functions as an exercise.

The tangent bundle carries a natural projection map π : TM → M , π(p, v) = p,
called the tangent bundle projection, which is simply the restriction of the projection
pr1 : V × V → V and thus differentiable. The inverse images, or fibers, π−1(p) =
TpM are the individual tangent spaces of M . Later on we shall investigate auxiliary
manifolds over a base manifold admitting a “projection map” whose fibers are vector
spaces in more detail (see chapter on vector bundles).
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With the tagent bundle at hand we can define the derivative of a map between
two submanifolds:

Definition 2.5. Let Mi ⊂ Vi be two Ck-submanifolds and let h : M1 → M2 be a
Ck-map. The derivative (or differential) of h is defined by

h′ : TM1 → TM2 h′(p, v) = (h(p), (h ◦ γ)′(0))

where γ : (−ε, ε) → M is a Ck-curve with γ(0) = p and γ′(0) = v ∈ TpM . That
this is actually well defined, i.e., not dependent on the curve γ chosen, will be part
of the theorem below. It will be convenient to denote the second component of h′

by h′p(v) = (h ◦ γ)′(0).

Theorem 2.10. Let h : M1 → M2 be a Ck-map between two Ck-submanifolds
Mi ⊂ Vi and denote the tangent bundle projections by πi : TMi → Mi. Then the
derivative h′ : TM1 → TM2 is well defined and Ck−1. Furthermore, π2◦h′ = h◦π1,
i.e., h′p(v) ∈ Th(p)M2 for v ∈ TpM1 and for all p ∈ M1 the map h′p : TpM1 →
Th(p)M2 is linear.

Proof. To see that h′ is well defined extend h to a Ck-map h̃ defined in some open
neighborhood of p ∈ M1 in V1. Then

h′p(v) = (h ◦ γ)′(0) = (h̃ ◦ γ)′(0) = h̃′(p)(v)

which only depends on v and not on the curve γ chosen with γ′(0) = v.
In order to verify that h′ is Ck−1 we take a local parametrization Φ : D×W →

TM1 of the form Φ(x, ξ) = (f(x), f ′(x)(ξ)) where f : D → M1, D ⊂ W open, is a
local parametrization of M1. Then one easily checks that

(h′ ◦ Φ)(x, ξ) = ((h ◦ f)(x), (h ◦ f)′(x)(ξ))

so that the map (h′ ◦ Φ) : D ×W → TM2 ⊂ V2 × V2 is Ck−1.
To check that h′p(v) = (h◦γ)′(0) ∈ Th(p)M2 we note that h◦γ is a Ck-curve in M2

with (h ◦ γ)(0) = h(p). Thus, by definition of the tangent space, h′p(v) ∈ Th(p)M2.
Finally we show that h′p : TpM1 → Th(p)M2 is linear. Take v1, v2 ∈ TpM1 and

a, b ∈ R. Represent vi by curves γi in M1, i.e., γi(0) = p and γ′i(0) = vi, and
av1 + bv2 by a curve γ. Extend as before h to a Ck-map h̃ defined in some open
neighborhood of p ∈ M1 in V1. Then

h′p(av1 + bv2) =(h ◦ γ)′(0) = (h̃ ◦ γ)′(0) = h̃′(p)(av1 + bv2) =

ah̃′(p)(v1) + bh̃′(p)(v2) = a(h̃ ◦ γ1)′(0) + b(h̃ ◦ γ2)′(0) =

a(h ◦ γ1)′(0) + b(h ◦ γ2)′(0) = ah′p(v1) + bh′p(v2)

which finishes the proof. ¤

Using the tangent bundle and the derivative h′ of a map between submanifolds
the chain rule becomes more natural to state:

Theorem 2.11. Let Mi ⊂ Vi, i = 1, 2, 3, be Ck-submanifolds and let h1 : M1 → M2

and h2 : M2 → M3 be Ck-maps. Then h2 ◦ h1 : M1 → M3 is Ck and (h2 ◦ h1)′ :
TM1 → TM3 is given by the “chain rule”

(h2 ◦ h1)′ = h′2 ◦ h′1 .
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Proof. You should convince yourself hat the composition of Ck-maps on subman-
ifolds is again Ck. To proof the chain rule let p ∈ M1 and γ : (−ε, ε) → M1 be a
Ck-curve with γ(0) = p and γ′(0) = v. Then h1◦γ is a Ck-curve in M2 representing
the tangent vector (h1 ◦ γ)′(0). Thus

(h′2 ◦ h′1)(p, v) =h′2(h1(p), (h1 ◦ γ)′(0)) =

(h2(h1(p)), (h2 ◦ (h1 ◦ γ))′(0)) =

((h2 ◦ h1)(p), ((h2 ◦ h1) ◦ γ)′(0)) =

(h2 ◦ h1)′(p, v) .

¤

In case when Mi ⊂ Vi are open subsets we already know that their tangent
bundles TMi = Mi × Vi. The derivative h′1 : TM1 → TM2 is given by h′1(p, v) =
(h1(p), (h1 ◦ γ)′(0)) where we can choose γ(t) = p + tv for small t. Thus

h′1(p, v) = (h1(p), h′1(p)(v))

and the chain rule above gives

(h2 ◦ h1)′(p, v) =h′2(h1(p), h′1(p)(v)) = (h2(h1(p)), h′2(h1(p))(h′1(p)(v))) =

(h2(h1(p)), (h′2(h1(p)) ◦ h′1(p))(v))

which recovers in the second component (the first component is redundant) the
usual chain rule

(h2 ◦ h1)′(p)(v) = (h′2(h1(p)) ◦ h′1(p))(v) .

After having developed submanifolds and their basic calculus with relativly little
effort we could now start to study differential-topological and geometrical questions.
The aim of this course though is to aquaint you with the more general notion of an
abstract manifold which does have advantages. As an example let us look at real
projective space

RPn = all lines through the origin in Rn+1 = Sn/(±1)

where the last quotient space is given by identifying antipodal points, x and −x, on
the sphere Sn ⊂ Rn+1 (a line through the origin cuts the sphere in an antipodal pair
of points). From topology we know that RPn can be given the quotient topology in
which the natural projection π : Sn → RPn, π(x) = {x,−x}, becomes continuous.
With our methods so far it is not clear how to make RPn into a submanifold (even
though the sphere is a very simple submanifold of Rn+1 there seems to be no way
to see RPn as a submanifold of Rn+1). One way to get a submanifold which is
homeomorphic to RPn is the following (the details are left as an exercise): consider
the map f : Sn → V , f(x) = xxT , into V = symmetric (n + 1)× (n + 1)-matrices,
where we view x ∈ Rn+1 always as column vectors and xT is the transpose, i.e., a
row vector. The map f is differentiable, f(x) = f(y) if and only if y = −x, and
the image M := f(Sn) ⊂ V is a submanifold of dimension n. Thus f : RPn → M
is differentiable and bijective and furthermore, its inverse is continuous also. This
exhibits RPn as a submanifold in the space of symmetric matrices. Of course, when
studying RPn one does not necessarily want to work with this model of RPn. This
prompts the notion of an “intrinsic” differentiable model of RPn. How to achieve
this will be discussed in the next chapter.
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3. Abstract manifolds

To define an abstract manifold we will simply use the properties of chart maps
for a submanifold as discussed in the end of section 2.2 as axioms. It might be
helpful to have those in mind as we proceed.

3.1. Differentiable structures.

Definition 3.1. Let M be a set. A chart (or local coordinate) on M is a pair
(U, φ) where U ⊂ M is a subset of M , φ : U → W is an injective map into some
(finite dimensional) normed vector space W and φ(U) ⊂ W is an open subset. In
particular, φ : U → φ(U) is bijective. We call U the chart (or coordinate) domain
and φ the chart (or coordinate) map. Note that the normed vector space W comes
with the chart even though we do not explicitely mention it (to avoid overbearing
notation). If p ∈ M lies in the chart domain U we say (U, φ) is a chart near p.

Two charts (Ui, φi) are Ck-compatible if φi(U1∩U2) ⊂ Wi are open and φ2◦φ−1
1 :

φ1(U1∩U2) → φ2(U1∩U2) is a Ck-diffeomorphism. This implies that also φ1◦φ−1
2 is

a Ck-diffeomorphims so that compatibility of charts is a symmetric notion. Charts
whose chart domains are disjoint, U1 ∩ U2 = ∅, are always compatible. We allow
k = 0, 1, 2, ...,∞, ω where C0-diffeomorphisms are homeomorphisms and Cω stands
for real analytic. Note that if two charts (Ui, φi) are Ck-compatible the vector
spaces Wi must have the same dimension: this follows from the inverse function
theorem 1.3 in case k 6= 0 and the invariance of domain theorem for k = 0.

A Ck-atlas of M is given by a collection of pairwise Ck-compatible charts A =
{(Ui, φi) ; i ∈ I} whose chart domains cover M , i.e.,

⋃
i∈I Ui = M . Two Ck-

atlases Ai are equivalent if their union A1 ∪ A2 is again a Ck-atlas, i.e., if every
chart in A1 is Ck-compatible with every chart in A2. We shall see below that
this is indeed an equivalence relation. The equivalence classes D are called Ck-
differentiable structures on M .

Given a Ck-differentiable structure D on M any Ck-atlas A ∈ D is said to be
an atlas representing D, in other words, A represents D if D = [A]. The union
Amax =

⋃
A∈DA of all atlases in a Ck-differentiable structure is called the maximal

atlas representing D. By construction, Amax is the largest Ck-atlas representing D,
i.e., any Ck-atlas A representing D is contained in Amax.

The concept of a differentiable structure is just a formal way to express the
perhaps more intuitive idea of adding compatible charts to a given atlas untill one
reaches a maximal atlas.

Definition 3.2. A Ck-manifold is a set M together with a Ck-differentiable struc-
ture D.

In examples the differentiable structure D is always given by a representing atlas
A so that D = [A]. The statement “ let (U, φ) (or φ : U → W ) be a chart of M”
will always implicitely mean that the chart belongs to a representing atlas of the
differentiable structure on M .

Definition 3.3. Let M be a Ck-manifold with differentiable structure D. The
dimension at p ∈ M is defined by

dimp M := dim W

for any chart φ : U → W (belonging to the differentiable structure).
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Notice that dimp M is well-defined independently of the chart chosen, since the
vector spaces W of compatible charts all have the same dimension (see above).

Example 3.1. Any submanifold of a normed vector space is a manifold by the
above definition where the differentiable structure is represented by the atlas coming
from local parametrizations (compare end of section 2.2). This already gives us a
wealther of non-trivial examples of manifolds.

Next we discuss real projective space RPn for which there was no obvious way
to see it as a submanifold.

Example 3.2. Recall that RPn is the set of lines through the origin in Rn+1, i.e.,
a point p ∈ RPn is given by a line p = Rx with 0 6= x ∈ Rn+1. Two vectors
x, y ∈ Rn+1 give the same line if and only if y = ax for some 0 6= a ∈ R. This leads
to the description of RPn as (Rn+1 \ {0})/R∗ where points in projective space are
equivalence classes [x] ∈ (Rn+1\{0})/R∗. Note that representatives y ∈ [x] are only
determined up to multiplications by non-zero a ∈ R∗. It is customary to call any
y = (y0, ..., yn) ∈ [x] homogeneous coordinates of the point [x]. Geometrically you
should think of RPn as Rn compactified by adding on ”points at infinity” which can
be represented by the set of all directions (i.e., lines) in Rn, thus RPn = Rn∪RPn−1.
For instance, the projective line RP 1 is just R added on one point at infinity so
that we can think of RP 1 as a circle. The projective plane RP 2 is R2 glued on an
RP 1, i.e., a circle, at infinity. How this circle is glued to R2 is something you might
want to contemplate.

We define a Cω-differentiable structure on RPn by giving an atlas consisting of
n + 1 many charts: for i = 0, ..., n let the chart domains be

Ui = {[x] ∈ RPn ; xi 6= 0} ⊂ RPn

and define as chart maps

φi : Ui → Rn , φ([x]) = (x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/x0) .

Since φi is bijective with inverse φ−1
i : Rn → Ui given by

φ−1
i (t1, ..., tn) = [t1, ..., ti, 1, ti+1, ..., tn]

(Ui, φi), i = 0, . . . , n, are indeed charts. To show that they form an atlas we check
their compatibility: let 0 ≤ j < k ≤ n then

φj(Uj ∩ Uk) = {t ∈ Rn ; tk 6= 0}
φk(Uj ∩ Uk) = {t ∈ Rn ; tj+1 6= 0}

which are both open subsets of Rn. The coordinate transition map φk ◦ φ−1
j :

φj(Uj ∩ Uk) → φk(Uj ∩ Uk) is given by

(φk ◦ φ−1
j )(t) = φk([t1, ..., tj , 1, tj+1, ..., tn]) =

= (t1/tk, ..., tj/tk, 1/tk, tj+1/tk, ..., tk−1/tk, tk+1/tk, ..., tn/tk)

which is a Cω-diffeomorphism. Thus A = {(Ui, φi) ; i = 0, ..., n} is a Cω-atlas
which makes RPn into a Cω-manifold. The charts given are frequently called affine
charts for RPn the reason being that each Ui presents an “ordinary” Rn inside RPn

via the map φ−1
i . We will see later that this differentiable structure is “natural” in

many ways.
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Before we go on to discuss the topology of a manifold let us proof that the notion
of equivalence of atlases is indeed an equivalent relation: reflexivity and symmetry
are obvious from the defintion. If we have three atlases Ai so that A1 is equivalent
to A2 and A2 is equivalent to A3 we need to see that A1 is equivalent to A3. Let
(Ui, φi) ∈ Ai, i = 1, 3, be two charts. If the chart domains do not intersect then they
are compatible charts. If U1 ∩U3 6= ∅ then we have to show that φi(U1 ∩U3) ⊂ Wi,
i = 1, 3, are open and φ3 ◦φ−1

1 : φ1(U1∩U3) → φ3(U1∩U3) is a Ck-diffeomorphism.
Openess can be shown as follows: any point x0 ∈ φi(U1 ∩ U3) is of the form φi(p0)
for p0 ∈ U1 ∩ U3. Take a chart (U2, φ2) ∈ A2 with p0 ∈ U2. Since (U2, φ2) is
compatible with both charts (Ui, φi), i = 1, 3, the subsets φ2(U2 ∩ Ui) ∈ W2 and
φi(U2 ∩ Ui) ∈ Wi are open and φi ◦ φ−1

2 : φ2(U2 ∩ Ui) → φi(U2 ∩ Ui), i = 1, 3, are
Ck-diffeomorphisms. But the subset

φ2(U1 ∩ U2 ∩ U3) = φ2(U2 ∩ U1) ∩ φ2(U2 ∩ U3)

which is open in W2. Applying the Ck-diffeomorphism φi ◦φ−1
2 we obtain the open

neighborhood φi(U1 ∩ U2 ∩ U3) ⊂ φi(U1 ∩ U3) ⊂ Wi of x0. To see that φ3 ◦ φ−1
1

is a Ck-diffeomorphism it suffices to show this locally (since the map is already a
bijection). But on the open subset φ1(U1 ∩ U2 ∩ U3) ⊂ W1 we can express

φ3 ◦ φ−1
1 = (φ3 ◦ φ−1

2 ) ◦ (φ2 ◦ φ−1
1 ) ,

which is the composition of Ck-diffeomorphism, and as such a Ck-diffeomorphism.

3.2. Manifold topology. Manifolds come with a natural topology given by their
differentiable structure.

Definition 3.4. Let M be a Ck-manifold with differentiable structure D. We call
a subset O ⊂ M open if φ(O ∩ U) ⊂ W is open for all charts (U, φ) ∈ A for any
atlas A representing the differentiable structure D = [A].

As stated this definition, though only dependent on the differentiable structure,
is not particularily useful to work with. We would have to test openess against all
charts from all equivalent atlases. In practice, a manifold ususally is given by a
specific atlas. That we only have to test against a particular atlas is the content of
the next

Lemma 3.1. Let M be a Ck-manifold with differentiable structure D and let A ∈
D. A subset O ⊂ M is open if and only if φ(O ∩ U) ⊂ W is open for all charts
(U, φ) ∈ A.

Proof. Let (U1, φ1) ∈ A1 be a chart in an equivalent atlas A1 ∈ D. We have to
show that φ1(O ∩ U1) ⊂ W1 is open. Let x0 ∈ φ1(O ∩ U1) (if φ1(O ∩ U1) = ∅ it is
open and we are done) and let p0 = φ−1

1 (x0) ∈ O ∩ U1. Since A is an atlas there
exists a chart (U, φ) ∈ A with p0 ∈ U . The subset

φ(O ∩ U ∩ U1) = φ(U1 ∩ U) ∩ φ(O ∩ U) ⊂ W

is open since φ(U1 ∩ U) ⊂ W is open by definition of compatible charts and φ(O ∩
U) ⊂ W is open by assumption. Moreover, φ1 ◦ φ−1 : φ(U ∩ U1) → φ1(U ∩ U1) is
a Ck-diffeomorphism so that its image φ1(O ∩ U ∩ U1) ⊂ φ1(O ∩ U1) of the open
subset φ(O ∩ U ∩ U1) ⊂ φ(U ∩ U1) is open (in W1) and contains x0. Thus x0 is an
inner point of φ1(O ∩ U1) ⊂ W1. Since x0 was chosen arbitrarily we conclude that
φ1(O ∩ U1) ⊂ W1 is open. ¤
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We leave it as an exercise to verify that the collection of all open subsets of M
indeed form a topology. We call this toplogy TM the manifold topology of M .

Given a chart (U, φ) for M the chart domain U is open by definition and the
chart map φ : U → φ(U) ⊂ W is a homeomorphism: since any open subset O ⊂ U
is also open in M and thus φ(O) ⊂ W is open we see that φ is an open map.
To check that φ is continuous we take an open subset B ⊂ φ(U) and have to
verify that O := φ−1(B) is open in M . Let (U1, φ1) be a compatible chart then
U1 ∩ O = U1 ∩ U ∩ O (note that O ⊂ U) and thus φ(U1 ∩ O) = φ(U1 ∩ U) ∩ B,
which is open in W . Moreover, φ1 ◦ φ−1 is a Ck-diffeomorphism so that its image
φ1(O ∩ U1) of φ(U1 ∩O) is an open subset of W1.

From this we immediately conclude that the manifold topology is “locally eu-
clidean”, i.e., each point on M has an open neighborhood which is homeomorphic
to an open neighborhood in some Rn (recall that any n-dimensional vector space
is linearly homeomorphic to Rn). Thus TM has a countable neighborhood base
(first countability axiom), is locally compact (each point has a compact neighbor-
hood) and is locally path connected (so that the connected components of M are
path connected). In general the manifold topology is neither Hausdorff nor second
countable (i.e., there is no countable base for the topology).

Recall that the dimension of a Ck-manifold M at a point p ∈ M (definition 3.3)
is given by dimp M = dim W where φ : U → W is a chart near p ∈ M . Thus,
dimp M = dimq M for all p, q ∈ U . Since chart domains are open this says that
the map p 7→ dimp M is locally constant on M and thus constant on connected
components.

Definition 3.5. Let M be a connected Ck-manifold. The dimension of M is given
by dim M := dimp M for p ∈ M .

We have seen above that chart maps are homeomorphism in the manifold topol-
ogy. This property already characterizes the manifold topology which is a very
useful fact when identifying an already known topology as the manifold topology.

Lemma 3.2. Let M be a Ck-manifold with atlas A. A topology T on M is the
manifold topology if and only if for all (U, φ) ∈ A the chart domain U ∈ T and the
chart map φ : U → φ(U) ⊂ W is a homeomorphism (where, of course, U carries
the induced topology from T ).

Proof. Let T be a topology for which the chart maps are homeomorphisms. We
need to show that T = TM . If O ∈ TM then O ∩U ∈ TM and hence φ(O ∩U) ⊂ W
is open for all charts (U, φ) ∈ A (since φ is a homeomorphism in the manifold
topology). Since φ is also a homeomorphism w.r.t. the topology T we conclude
that O∩U = φ−1(φ(O∩U)) ∈ T . Thus O =

⋃
(U,φ)∈AO∩U is open w.r.t. T . The

other inclusion is shown similarily. ¤

Let us conclude this paragraph with some examples:

Example 3.3. If M ⊂ V is a Ck-submanifold then the manifold topology is the
subspace topology induced from V : this follows immediately from the previous
lemma and the fact that the differentiable structure on M is given by the inverses
of parametrizations which we have shown in section 2.2 to be homeomorphisms
w.r.t. the subspace topology on M ⊂ V . Thus submanifolds of (finite dimensional)
normed vector spaces are always Hausdorff and second countable.
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Example 3.4. An example of a non-Hausdorff manifold is the set M of vertical lines
in the punctured plane R2 \ {0}. For each non-zero x-value there is exactly one
such line, but there are two (half) lines at x = 0 so that M = R ∪ {0′}. The two
charts (R, id) and (R∗ ∪ {0′}, φ), where R∗ = R \ {0} and φ|R∗ = id|R∗ , φ(0′) = 0,
are easily checked to be Cω-compatible. Thus M becomes a Cω-manifold. Since
the open neighborhoods of 0 ∈ M are just the usual open neighborhoods of 0 ∈ R
and the open neighborhoods of 0′ ∈ M are punctured open neighborhoods U \ {0}
of 0 ∈ R union 0′ we conclude that 0 and 0′ cannot be seperated, i.e., M is not
Hausdorff. Regarding M as the set of equivalence classes of points in R2\{0} where
x ∼ y if and only if x1 = y1 6= 0 or sign(x2) = sign(y2) for x1 = y1 = 0 you should
check, using the previous lemma, that the manifold topology on M is the quotient
topology on R2 \ {0}/ ∼. In particular, M is connected (images of connected sets
under continuous maps are connected) and of dimension 1.

Example 3.5. Real projective space RPn can be viewed as the set of equivalence
classes (Rn+1 \{0})/R∗ and as such has the quotient topology T̃ as a natural topol-
ogy. We will see that this is in fact the manifold topology. In particular, RPn is a
connected, second countable, Hausdorff (assuming you have shown this in topology,
otherwise do it now) manifold of dimension n. Recall that the quotient topology
is the finest topology on RPn making the coset projection π : Rn+1 \ {0} → RPn,
π(x) = [x], continuous, i.e., a subset O ⊂ RPn is open w.r.t. T̃ if and only if
π−1(O) ⊂ Rn+1 \ {0} is open. Let A = {(Ui, φi) ; i = 0, ..., n} be the atlas of affine
charts described in example 3.2. Then π−1(Ui) = {x ∈ Rn+1 \ {0} ; xi 6= 0}
which is an open subset of Rn+1 \ {0}. Thus our chart domains are open in
the quotient topology. Furthermore, φi is continuous in the quotient topology
if and only if φi ◦ π : π−1(Ui) → Rn is continuous. But the latter map sends
(x0, ..., xn) to (x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi) which is obviously continuous.
Since φ−1

i = π ◦ fi where fi : Rn → Rn+1 \ {0} is the continuous map fi(t) =
(t1, ..., ti, 1, ti+1, ..., tn) also φ−1

i is continuous. Thus φi : Ui → Rn is a homeo-
morphism w.r.t. the quotient toplogy on RPn so that by lemma 3.2 the manifold
topology of RPn is the quotient topology. Finally note that π restricts to a contin-
uous (surjective) map π : Sn → RPn, where Sn ⊂ Rn+1 \ {0} carries the subspace
topology, so that RPn is in fact compact.


