Midterm Exam, Honors Calculus II

Problem 1. Calculate the area bounded by the graphs of $y=x e^{-3 x^{2}}$, $y=x^{2}-4$ and the vertical lines $x=0$ and $x=2$. Draw an accurate picture of the region whose area you are supposed to compute.

Problem 2. Calculate the following integrals:
(i) $\int x^{2} \ln (x) d x=$?
(ii) $\int_{0}^{\pi / 2} \sin (x) \sqrt{\cos (x)} d x=$?

Problem 3. Calculate the length of the curve $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ given by $\gamma(t)=\left(t^{2}, t^{3}\right)$.
Problem 4. Calculate the area of the surface of revolution obtained by revolving around the x-axis the region bounded by $y=\sqrt{x}$ and $y=x$ between their intersection points. Draw a picture of this region.

Problem 5. Calculate the volume of the solid obtained by revolving around the x-axis the region between the graphs of $y=x$ and $y=$ $\sin (x)$ for $0 \leq x \leq \pi$. Draw a picture of this region.
Problem 6. Calculate the integral $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=$?

