Midterm, Differential Geometry
DUE $3 / 24 / 17$

Problem 1. The Frenet frame of a curve in \mathbb{R}^{3}. For a regular plane curve (and more generally for a regular curve on a 2 -dimensional surface - e.g. the 2 sphere above) we could construct a unique adapted frame F. This is not the case for curves in higher dimensional spaces. Besides the curve being regular we need more conditions to ensure the existence of a unique adapted frame, which then will give invariants of the curve, which in turn reconstruct the curve up to Euclidean motions.
Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be an arclength parametrized curve. Then $T=\gamma^{\prime}$ has unit length.
(i) Show that $<\gamma^{\prime \prime}, T>=0$. Thus, provided that $\gamma^{\prime \prime}$ is nowhere vanishing, we can define $N:=\gamma^{\prime \prime} /\left\|\gamma^{\prime \prime}\right\|$ and obtain a moving basis $\{T, N, T \times N\}$. A regular space curve for which $\gamma^{\prime \prime}$ is nowhere vanishing is called a Frenet curve. From now on we assume that we have this property.
(ii) Let γ be an arclength parametrized Frenet curve. Define the curvature function to be $\kappa:=\left\|\gamma^{\prime \prime}\right\|>0$ and the torsion function $\tau:=<T \times N, N^{\prime}>$. Show that the adapted frame $F=(T, N, T \times N): I \rightarrow \mathbf{S O}(3, \mathbb{R})$ and calculate $A=F^{-1} F^{\prime}$ in terms of κ and τ. This is just a more compact formulation of the following: calculate T^{\prime} and express it in the basis $\{T, N, T \times N\}$; then do the same for N^{\prime} and $(T \times N)^{\prime}$. You can save yourself computations by using that $\{T, N, T \times N\}$ is an orthonormal basis for each $t \in I$ and look up HW 5 Problem 1.
(iii) If γ is an arclength parametrized planar curve, we can regard it as a space curve. Show that this space curve has $\tau \equiv 0$. Also prove the converse: if a space curve has $\tau \equiv 0$ then it lies in some plane $P \subset \mathbb{R}^{3}$.
(iv) Show that given functions $\kappa: I \rightarrow \mathbb{R}, \kappa(t)>0$ for all $t \in I$, and $\tau: I \rightarrow \mathbb{R}$ both smooth, there exists a unique (up to Euclidean motion) Frenet curve in \mathbb{R}^{3} whose curvature and torsion are κ and τ respectively.
(v) Classify all the Frenet space curves which have curvature and torsion constant.

Problem 2. Let $\gamma: I \rightarrow S^{2}$ be a regular curve in the 2-sphere. We have discussed (in HW 5 Problem 2) its curvature, which we shall call for now geodesic curvature (to not get confused with the curvature this curve may have as a curve in \mathbb{R}^{3}) and label it as κ_{g}.
(i) Regarding the curve γ as a space curve $S^{2} \subset \mathbb{R}^{3}$, and assuming it to be Frenet, calculate its curvature κ and torsion τ in terms of κ_{g}.
(ii) State and prove necessary and sufficient conditions for a Frenet curve $\gamma: I \rightarrow \mathbb{R}^{3}$ to be contained in some 2-sphere $S=\left\{x \in \mathbb{R}^{3} ;\|x-c\|=r\right\}$ of center c and radius $r>0$.

Problem 3. Find all the critical points (under compactly supported variations) for the length functional

$$
L(\gamma)=\int_{I}\left\|\gamma^{\prime}(t)\right\| d t
$$

on regular curves $\gamma: I \rightarrow \mathbb{R}^{n}$ in any dimension n. Since there is no notion of curvature for $n \geq 4$ (at least we did not discuss that) you will just have to leave the term $\gamma^{\prime \prime}$ in the variational calculus and try to find the conditions γ has to satisfy to be a critical point.

Problem 4. Consider the energy functional

$$
E(\gamma)=\int_{I}\left\|\gamma^{\prime}(t)\right\|^{2} d t
$$

on regular curves $\gamma: I \rightarrow S^{2}$.
(i) Show that if $\gamma_{s}: I \rightarrow S^{2}$ is any variation of $\gamma=\gamma_{0}$ by curves on S^{2} then its variational vector field $V=\dot{\gamma}$ satisfies $<V, \gamma>=0$.
(ii) Let $V: I \rightarrow \mathbb{R}^{3}$ be smooth with $<V, \gamma>=0$. Show that there is a variation γ_{s} of γ by curves on S^{2}. Moreover, if V is compactly supported so will be γ_{s}.
(iii) Characterize the critical points of E under compactly supported variations γ_{s} by curves on S^{2}.
(iv) If the curve γ were simply closed, it would define an enclosed area (modulo 4π - one has two areas for a simply closed curve on the 2 -sphere). Characterize area constrained E critical curves γ. Using the Lagrange multiplier approach what is the functional $\tilde{E}=E+$? you will work with? You will need to find an expression of the enclosed area in terms of γ.

