
Midterm, Differential Geometry
due 3/24/17

Problem 1. The Frenet frame of a curve in R3. For a regular plane curve
(and more generally for a regular curve on a 2-dimensional surface - e.g. the 2-
sphere above) we could construct a unique adapted frame F . This is not the case
for curves in higher dimensional spaces. Besides the curve being regular we need
more conditions to ensure the existence of a unique adapted frame, which then will
give invariants of the curve, which in turn reconstruct the curve up to Euclidean
motions.
Let γ : I → R3 be an arclength parametrized curve. Then T = γ′ has unit length.

(i) Show that < γ′′, T >= 0. Thus, provided that γ′′ is nowhere vanishing,
we can define N := γ′′/||γ′′|| and obtain a moving basis {T,N, T ×N}. A
regular space curve for which γ′′ is nowhere vanishing is called a Frenet
curve. From now on we assume that we have this property.

(ii) Let γ be an arclength parametrized Frenet curve. Define the curvature
function to be κ := ||γ′′|| > 0 and the torsion function τ :=< T ×N,N ′ >.
Show that the adapted frame F = (T,N, T × N) : I → SO(3,R) and
calculate A = F−1F ′ in terms of κ and τ . This is just a more com-
pact formulation of the following: calculate T ′ and express it in the basis
{T,N, T ×N}; then do the same for N ′ and (T ×N)′. You can save your-
self computations by using that {T,N, T ×N} is an orthonormal basis for
each t ∈ I and look up HW 5 Problem 1.

(iii) If γ is an arclength parametrized planar curve, we can regard it as a space
curve. Show that this space curve has τ ≡ 0. Also prove the converse: if
a space curve has τ ≡ 0 then it lies in some plane P ⊂ R3.

(iv) Show that given functions κ : I → R, κ(t) > 0 for all t ∈ I, and τ : I → R
both smooth, there exists a unique (up to Euclidean motion) Frenet curve
in R3 whose curvature and torsion are κ and τ respectively.

(v) Classify all the Frenet space curves which have curvature and torsion con-
stant.

Problem 2. Let γ : I → S2 be a regular curve in the 2-sphere. We have discussed
(in HW 5 Problem 2) its curvature, which we shall call for now geodesic curvature
(to not get confused with the curvature this curve may have as a curve in R3) and
label it as κg.

(i) Regarding the curve γ as a space curve S2 ⊂ R3, and assuming it to be
Frenet, calculate its curvature κ and torsion τ in terms of κg.

(ii) State and prove necessary and sufficient conditions for a Frenet curve
γ : I → R3 to be contained in some 2-sphere S = {x ∈ R3 ; ||x − c|| = r}
of center c and radius r > 0.

Problem 3. Find all the critical points (under compactly supported variations)
for the length functional

L(γ) =

∫
I

||γ′(t)||dt

on regular curves γ : I → Rn in any dimension n. Since there is no notion of
curvature for n ≥ 4 (at least we did not discuss that) you will just have to leave the
term γ′′ in the variational calculus and try to find the conditions γ has to satisfy
to be a critical point.
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Problem 4. Consider the energy functional

E(γ) =

∫
I

||γ′(t)||2dt

on regular curves γ : I → S2.

(i) Show that if γs : I → S2 is any variation of γ = γ0 by curves on S2 then
its variational vector field V = γ̇ satisfies < V, γ >= 0.

(ii) Let V : I → R3 be smooth with < V, γ >= 0. Show that there is a variation
γs of γ by curves on S2. Moreover, if V is compactly supported so will be
γs.

(iii) Characterize the critical points of E under compactly supported variations
γs by curves on S2.

(iv) If the curve γ were simply closed, it would define an enclosed area (modulo
4π – one has two areas for a simply closed curve on the 2-sphere). Charac-
terize area constrained E critical curves γ. Using the Lagrange multiplier
approach what is the functional Ẽ = E+? you will work with? You will
need to find an expression of the enclosed area in terms of γ.


