Problem 1. Show that the existence of sup/inf for bounded above/below non-empty subsets of \mathbb{R} implies that every Cauchy sequence is convergent in \mathbb{R} .

Problem 2. Show that knowing that bounded monotone sequences converge in \mathbb{R} implies that every bounded above/below non-empty subset of \mathbb{R} has a sup/inf.

Thus we have shown that convergency of Cauchy sequences, bounded monotonicity convergency and existence of \sup/\inf for bounded subsets are all equivalent in \mathbb{R} .

Problem 3. Let $A_n := [a_n, b_n] \subset \mathbb{R}$ be a sequence of nested closed intervals, $a_n < b_n$, and $A_{n+1} \subset A_n$. Show that the infinite intersection $A_1 \cap A_2 \cap A_3 \cap A_4 \cdots$ is non-empty. Is this true if the intervals A_n are not closed, e.g. for open intervals?

Problem 4. Some calculations with complex numbers:

- (i) $(1-3i)^{-1} = ?$
- (ii) $i^n = ?$ for $n \in \mathbb{Z}$.
- (iii) z and w in \mathbb{C} are perpendicular vectors in \mathbb{R}^2 if and only if $\operatorname{Re}(z\bar{w}) = 0$.
- (iv) z and w in \mathbb{C} are linearly dependent vectors in \mathbb{R}^2 if and only if $\text{Im}(z\bar{w}) = 0$.
- (v) Proof Pythagoras' Theorem: if z and w are perpendicular then $|z|^2 + |w|^2 = |z w|^2$

Problem 5. Let $\sum_{k=1}^{\infty} z_k$ be an infinite series. Then $\sum_{k=1}^{\infty} z_k$ converges to L if and only if $\sum_{k=1}^{\infty} \operatorname{Re} z_k$ converges to $\operatorname{Re} L$ and $\sum_{k=1}^{\infty} \operatorname{Im} z_k$ converges to $\operatorname{Im} L$. In other words:

Re
$$\sum_{k=1}^{\infty} z_k = \sum_{k=1}^{\infty} \operatorname{Re} z_k$$
 and Im $\sum_{k=1}^{\infty} z_k = \sum_{k=1}^{\infty} \operatorname{Im} z_k$.

Furthermore (or perhaps first) show that

$$\overline{\sum_{k=1}^{\infty} z_k} = \sum_{k=1}^{\infty} \overline{z_k} \,.$$

Problem 6. Show that the series $\sum_{k=2}^{\infty} \frac{1}{k^2-1}$ converges and calculate its limit. Hint: write out the partial sums; think partial fractions.

Problem 7. Show that the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges (you probably will not be able to calculate its limit). Hint: comparison test.

 $\mathbf{2}$