Problem 1. Let $f: D \to \mathbb{C}$ be a function on a domain $D \subset \mathbb{C}$. Show:

- (i) The functions $z \mapsto \operatorname{Re} z, z \mapsto \operatorname{Im} z$, and $z \mapsto \overline{z}$ are continuous.
- (ii) f is continuous if and only if Re f and Im f are continuous real valued functions on D.
- (iii) \underline{f} is continuous if and only if \overline{f} is continuous (where $\overline{f}(z) := \overline{f(z)}$).

Problem 2. Define the general exponential function to arbitrary base a > 0 and exponent $z \in \mathbb{C}$ via

$$a^z := \exp(z \log a) \,.$$

Show the following properties:

- (i) a^z is a continuous function on \mathbb{C} ;
- (ii) $a^n = a \cdot a \cdots a$ (*n*-times) for $n \in \mathbb{N}$;
- (iii) $a^{n/m} = \sqrt[m]{a^n}$ for $n \in \mathbb{N}$ and $m \in \mathbb{N}$;
- (iv) $e^{z} = \exp(z)$ for $e = \exp(1)$;
- (v) $a^{z+w} = a^z a^w$ for $z, w \in \mathbb{C}$ and thus $a^{-z} = 1/a^z$.

Problem 3. (i) Show that $B_{\epsilon}(z_0) := \{z \in \mathbb{C} ; |z - z_0| < \epsilon\}$ is an open subset of \mathbb{C} .

- (ii) Show that a subset $D \subset \mathbb{C}$ is open (resp. closed), if and only if $D^{\circ} = D$ (resp. $\overline{D} = D$).
- (iii) Calculate the closures of $\mathbb{Q} \subset \mathbb{R}$, $\mathbb{R} \setminus \mathbb{Q} \subset \mathbb{R}$, $\{1/n; n \in \mathbb{N}\} \subset \mathbb{R}$.
- (iv) What is $\mathbb{Q}^{\circ} \subset \mathbb{R}$?

Problem 4. Show that a uniformly continuous function $f: D \to \mathbb{C}$ maps Cauchy sequences in D to Cauchy sequences. Is the converse true, that is, if a function has this property, is it uniformly continuous?

Problem 5. Prove or disprove:

- (i) f(x) = 1/x is uniformly continuous on (0, 1];
- (ii) $f(x) = x^2$ is uniformly continuous on $[0, \infty)$;
- (iii) $f(x) = \sqrt{x}$ is uniformly continuous on (0, 1).

Problem 6. Let $D \subset \mathbb{C}$. We call a set $U \subset D$ open, if $U = D \cap O$ with $O \subset \mathbb{C}$ open. Show that $f: D \to \mathbb{C}$ is continuous if and only if pre-images of open subsets in \mathbb{C} are open in D.