Practice Midterm Problems Math 235, Fall 2011

1. a: Write the system of equations below as a matrix equation:

$$y - z = 1$$
$$x + 2y + 2 = -2$$
$$-x - 2y - z = 3$$

b: Solve the system of equations using row operations.

2. a: For what vectors
$$v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 does the equation $Ax = v$ have a solution if $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 3 \end{pmatrix}$, and $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.
b: What is the rank of the matrix A ?
c: What is the dimension of im (A) ? What is the dimension of ker (A) ?

3. What does it mean for a vector to be in the image of a matrix A.

Let A be the matrix $\begin{pmatrix} 1 & 2 & 5 \\ -2 & 0 & -2 \\ 3 & -1 & 1 \end{pmatrix}$. Is $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ an element of the image of A? Why or why not?

4. a: Define what it means for a set S to be a basis of a subspace $V \subset \mathbb{R}^n$. b: Let

$$A = \begin{pmatrix} 1 & 2 & 3 & -1 \\ -1 & 0 & 1 & -1 \\ -1 & 4 & 3 & -5 \end{pmatrix}.$$

Give a set of vectors that span im(A) and that are independent.

5. a: Let A be a $p \times q$ matrix, so A gives a linear map from \mathbb{R}^q to \mathbb{R}^p . Let $X_1, X_2 \in \mathbb{R}^q$. Assume that $A(X_1) = B$ and that $A(X_2) = 0$. Explain why $A(X_1 + X_2) = B$.

b: Let X_1 be a solution to A(X) = B. Explain why every solution to A(X) = B can be written as $X = X_1 + X_2$ with X_2 a solution to AX = 0.

6. Let A be a two by two matrix that rotates by angle π/4.
a: Find A.
b: Cive a geometric combensation for why 4²⁴ = L (Here L denotes the second s

b: Give a geometric explanation for why $A^{24} = I_2$. (Here I_2 denotes the 2 by 2 identity matrix.) What other powers of A yield I_2 ? What powers of A yield $-I_2$?

7. Solve the equation

$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 2 \\ 2 & 1 & -1 \end{pmatrix} X = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}.$$

for $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ by first finding the inverse of the given coefficient matrix.

8. Compute the products AB and BA of the two matrices A, B given below, and compare their ranks:

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 3 & -2 \end{pmatrix}$$
$$B = \begin{pmatrix} -1 & 0 & 0 \\ 4 & 8 & 7 \end{pmatrix}$$

9. Let W denote the set of vectors in \mathbb{R}^3 orthogonal to the vector $\begin{pmatrix} 3\\-1\\2 \end{pmatrix}$. Argue that W is a subspace and find a basis of W.

10. Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ 1 & 1 & 3 \\ -2 & 1 & -3 \end{pmatrix}.$$

Let $B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$. Find equations in b_1, b_2, b_3, b_4 so that the equation AX = B can be

solved. Find a basis of the image of A.

11. True or False. (Please give a reason if True or a counterexample if False.) a: The image of a 3×4 matrix A is a subspace of \mathbb{R}^4 .

b: If the kernel of a matrix A consists of the zero vector only, then the column vectors of A must be linearly independent.

- c: If u, v, w are in a subspace of any vector space, then so is 3u v w.
- d: The function

$$T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x-y \\ x+y \end{pmatrix}$$

is a linear map.

- e: If A is an invertible $n \times n$ matrix, then the reduced row echelon form of A is I_n .
- f: The formula AB = BA holds for all $n \times n$ matrices A and B.

g: If the 4×4 matrix A has rank 4, then any linear system with coefficient matrix A will have a unique solution.

- 12. An n×n matrix M defines a linear map from Rⁿ to Rⁿ. Note that M² also defines a linear map from Rⁿ to Rⁿ.
 a: Show that if v ∈ im(M²), then v ∈ im(M), meaning we have the inclusion of subspaces im(M²) ⊂ im(M).
 b: What are the corresponding statements about ker(M) and ker(M²)?
 c: Find a 3 × 3 matrix M with im(M) ≠ im(M²) and also (necessarily why?!) ker(M) ≠ ker(M²).
- 13. Let $f : \mathbb{R}^3 \to \mathbb{R}^5$ be a linear map. We are given that

$$f(u) = (0, 1, 2, 3, 4)$$

$$f(v) = (-1, 2, 6, 1, 4).$$

What is f(2u - 3v)?

- 14. Which of the following are subspaces of the indicated space. Explain your answer.
 a: The set of solutions in R³ to the equation 3x y + 2z = 1.
 b: The set of vectors in R⁴ orthogonal to (1, 2, 3, -4).
 - c: The subset of all 3×3 matrices A satisfying $A^T = 2A$.
- 15. The matrix M of size 4×6 has kernel with dimension 2. How many independent column vectors does M have? Why? What is the dimension of the image of M? Why?
- 16. Let

$$A = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & -4 \\ 4 & 7 \end{pmatrix}.$$

Find a 2×2 matrix X so that

$$AX = B.$$

17. The set

$$B = \left\{ \begin{pmatrix} 2\\ 3 \end{pmatrix}, \begin{pmatrix} 1\\ 2 \end{pmatrix} \right\}$$

is a basis of \mathbb{R}^2 .

a: Find the coordinates with respect to the standard basis of the vector \boldsymbol{v} whose coordinates with respect to B are

$$[v]_B = \begin{pmatrix} -2\\ 1 \end{pmatrix}.$$

b: Find the coordinates with respect to the basis B of the vector with coordinates

$$\begin{pmatrix} -2\\1 \end{pmatrix}$$

in the standard basis.

18. Let

$$M = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

be the matrix of a linear transformation with respect to the standard basis. Let

$$B = \left\{ \begin{pmatrix} 2\\ 3 \end{pmatrix}, \begin{pmatrix} 1\\ 2 \end{pmatrix} \right\}$$

be a basis of \mathbb{R}^2 . What is the matrix $[M]_B$ of the linear transformation of M with respect to the basis B.

19. For each of the linear maps below find a basis of \mathbb{R}^2 so that its matrix with respect to the basis is diagonal.

a: Orthogonal projection on the line in \mathbb{R}^2 spanned by $\begin{pmatrix} 1\\ 3 \end{pmatrix}$.

b: Reflection across the line y = 2x.