
Math 235 Midterm 2 Review Materials
(courtesy of Dr. Pat Dragon)

This summary is meant as a study guide. This is not a comprehensive re-
source, and will not singlehandedly prepare students for the midterm exam.
But it should streamline things a bit.

Please enjoy the following Inspirational Content : https://www.youtube.
com/watch?v=lIES3ii-IOg.

1 Definitions

The following definitions must be memorized:

• Vector space

• Subspace of a vector space

• Null space (or Kernel)

• Column space (or Image)

• Linear transformation between vector spaces

• Linearly independent set in a vector space

• Basis of a vector space

• Dimension of a vector space

• Rank of a matrix

2 Key Topics

This is a very brief reminder of important topics and skills we’ve discussed
and practiced this semester.
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2.1 Calculating Determinants

• Memorize the formula for the determinant of a 2× 2 matrix.

• Know how to calculate the determinant of a larger matrix using cofac-
tors.

2.2 Properties of Determinants

• Know how each kind of row operation affects the determinant of a
matrix.

• Know how determinants are related to invertibility of matrices.

• Be familiar with the determinant’s nice algebraic properties: det(AB) =
det(A) det(B), det(AT ) = det(A), det(I) = 1, det(0) = 0, etc.

• Know how determinants can be used to calculate the areas of parallel-
ograms, and volumes of parallelepipeds.

• Know how the determinant is interpreted geometrically: the absolute
value of the determinant is the ratio by which areas (in 2 dimensions)
or volumes (in 3 dimensions) are stretched.

2.3 Cramer’s Rule

• Be able to use Cramer’s rule to solve linear systems.

• Be able to use Cramer’s rule to calculate the inverse of a matrix.

2.4 Vector Spaces

• Know lots of examples of vector spaces.

• Be able to check whether or not a nonempty set is a vector space.

• Be able to prove basic properties, like 0~v = ~0, α~0 = ~0, and −~u = (−1)~u.

• Know lots of examples of subspaces.

• Be able to check whether or not a subset is a subspace.
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• Be able to determine whether or not a function between vector spaces
is a linear transformation.

2.5 Null Space (Kernel) and Column Space (Image)

• Be able to determine the null space (or kernel) of a matrix.

• Be able to determine the column space (or image) of a matrix.

• Know that if A is an m×n matrix, then Col(A) (or image) is a subspace
of Rm.

• Know that if A is an m×n matrix, then Nul(A) (or kernel) is a subspace
of Rn.

2.6 Linear Independence and Bases

• Be able to check whether or not a set of vectors in a vector space is
linearly independent.

• Be able to check whether or not a set of vectors spans a subspace.

• Be able to check whether or not a set of vectors is a basis for a subspace.

• Be able to construct bases for the null space and column space (or
kernel and image) of a matrix.

2.7 Coordinates

• Know how to calculate the coordinates and coordinate vector for a
given vector, with respect to a given basis.

• Know how to calculate a change of basis matrix.

2.8 Dimension and Rank

• Be able to calculate the dimension of a subspace.

• Know how the dimension of a vector space and the dimension of a
subspace are related.
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• Know how to calculate the rank (dimension of image) of a matrix.

• Know that for an m× n matrix A, the rank of A, plus the nullity of A
(the dimension of its null space or kernel), equals n.

• Be familiar with the incarnation of the invertible matrix theorem on
page 237.

3 Suggested Exercises

The following exercises should provide some useful review for the upcom-
ing midterm exam. Again, this by no means comprehensive.

3.1 Examples

For each of the following, provide an example. As always, you need to
fully justify your claim.

(a) A matrix with determinant zero

(b) A matrix with nonzero determinant

(c) A row operation which changes the determinant

(d) A row operation which does not change the determinant

(e) A vector space

(f) A set which is not a vector space

(g) A subspace

(h) A subset which is not a subspace

(i) A linear transformation between vector spaces that aren’t Rq

(j) A function between vectors spaces that aren’t Rq, which is not a linear
transformation

(k) The null space (kernel) of a matrix

(l) A basis for the null space (or kernel) of a matrix
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(m) The column space (or image) of a matrix

(n) A basis for the null space (or kernel) of a matrix

(o) A linearly independent set in a vector space that isn’t Rq

(p) A linearly dependent set in a vector space

(q) Coordinates for a vector with respect to a given basis

3.2 Determinants

Let M =


1 1 1 1 1
0 2 0 1 −1
0 0 1 0 1
0 0 1 2 −1
0 1 1 1 1

. Calculate det(M).

3.3 Properties of Determinants

Let A be a 3 × 3 matrix such that AT = −A. What are the possible
values of det(A)?

3.4 Areas and Determinants

Use a determinant to calculate the area of the triangle with vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1). Hint: a triangle is half of a parallelogram.

3.5 Cramer’s Rule

Let A =

 1 2 1
0 1 0
1 1 −1

. Let ~b =

 0
2
−2

.

(a) Use Cramer’s rule to solve A~x = ~b.

(b) Use Cramer’s rule to calculate A−1.
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3.6 Subspaces

Let V be the set of 3 × 3 matrices, let H be the set of 3 × 3 matrices
with at least one column of all zeroes, and let K be the set of 3× 3 matrices
whose third column is all zeroes. Show that H is not a subspace of V , but
K is.

3.7 Null Space (Kernel) and Column Space (Image)

Let A =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 2 0 0 0
0 1 0 1 0 1

. Find bases for Nul(A) and Col(A), and

determine the dimensions of these subspaces.

3.8 Bases of Vector Spaces

Let V be the set of 2× 2 matrices, and let H be the set of 2× 2 matrices

of the form

(
a a
b −b

)
, where a and b are arbitrary real numbers. Let

B =

{(
1 1
1 −1

)
,

(
1 1
−1 1

)}
, C =

{(
1 1
1 −1

)
,

(
−1 −1
−1 1

)}
Which of these is a basis for H?

3.9 Coordinates

Let V be the set of polynomials, and let H be the set of polynomials of
the form p(x) = ax3 + ax2 + bx+ c, where a, b, c are arbitrary real numbers.
Let p(x) = x3 + x2 + x + 1, let q(x) = 2x + 1, and let r(x) = x − 1. Let
B = {p(x), q(x), r(x)}.

For this exercise, you may assume that H is a subspace of V , and that B
is a basis for H. Let s(x) = x2 + 1. Find the coordinate vector for s(x) with
respect for B.
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3.10 End Boss: The Final Form

Let V be the set of smooth functions (functions which are infinitely many

times differentiable), and let V
L−→ V be the linear operator defined by

L(f) =
d2f

dx2

For this question, you may assume that V is a vector space, and that L is
a linear transformation. Determine the null space (or kernel) for L, find a
basis for the kernel, and determine its dimension. [I approve this message —
The Boss RK ;-]
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