Inner Product Spaces, Orthogonal Projections, and Orthonormal Bases

Def: An inner product on a vector space V is a map \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R} \) such that

(a) \(\langle f, g \rangle = \langle g, f \rangle \) (symmetry)

(b) \(\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle \)

(c) \(\langle cf, g \rangle = c \langle f, g \rangle \) \(\text{LT in 1st coordinate.} \)

(d) \(\langle f, f \rangle \geq 0 \) for all \(f \neq 0 \) in V (positive definite)

Note: By (c), we can see that \(\langle f, f \rangle = 0 \) if and only if \(f = 0 \).

Note: Applying the symmetry condition (a) to conditions (b) and (c), we see that

\[\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle \text{ and } \langle f, cg \rangle = c \langle f, g \rangle. \]

So inner products are linear transformations in both coordinates.

Example: The dot product on \(\mathbb{R}^n \) is the most common example of an inner product. Show that the dot product is an inner product.

(a) \(\langle \mathbf{v}, \mathbf{w} \rangle = v_1w_1 + v_2w_2 + \cdots + v_nw_n \)

(b) \(\langle \mathbf{v} + \mathbf{w}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{w}, \mathbf{u} \rangle \)

(c) \(\langle c\mathbf{v}, \mathbf{w} \rangle = c\langle \mathbf{v}, \mathbf{w} \rangle \)

(d) \(\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}_1^2 + \mathbf{v}_2^2 + \cdots + \mathbf{v}_n^2 = 0 \iff \mathbf{v}_1 = \cdots = \mathbf{v}_n = 0 \). So \(\langle \mathbf{v}, \mathbf{v} \rangle > 0 \) for all \(\mathbf{v} \neq 0 \).

Example: Let \(V = \mathbb{R}^{m \times n} \), the space of all \(m \times n \) matrices with entries in \(\mathbb{R} \). Define a pairing on \(V \) by \(\langle A, B \rangle = \text{tr}(A^T B) \) for all matrices \(A, B \) in \(V \). Show that \(\langle \cdot, \cdot \rangle \) is an inner product.

(a) \(\langle A^T B, C^T D \rangle = \langle C D^T A^T, B \rangle \)

(b) \(\langle A+C, B \rangle = \langle A, B \rangle + \langle C, B \rangle \)

(c) \(\langle A \rangle = \langle A^T B, B \rangle = \text{tr}(A^T B) \)

(d) \(\text{If } A \neq 0 \text{, show } A = [v_1 \ldots v_m]. \text{ Then } \langle A, A \rangle = \text{tr} \left(\begin{bmatrix} -v_1 & v_2 & \cdots & v_m \end{bmatrix} \begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix} \right) = \sum_{i=1}^{m} \sum_{j=1}^{m} v_i v_j = \mathbf{v}_1^2 + \cdots + \mathbf{v}_m^2 \neq 0. \)

Def: The norm or magnitude of an element \(f \) in an inner product space \(V \) is:

\[\| f \| = \sqrt{\langle f, f \rangle} \]

Def: We say that two elements \(f, g \) in an inner product space \(V \) are orthogonal or perpendicular if: \(\langle f, g \rangle = 0 \).

Def: The distance between two elements \(f, g \) in an inner product space \(V \) is:

\[\| f - g \| = \sqrt{\langle f-g, f-g \rangle} \]

Example: Let \(V = C[0,1] \), and consider the inner product \(\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt \). Let \(m(t) = 3t^2 \) and \(n(t) = -t \).

Find \(\| m \| \) and find the distance between \(m \) and \(n \).

(a) \(\| m \| = \sqrt{\langle m, m \rangle} = \sqrt{\int_0^1 m(t)^2 \, dt} = \sqrt{\int_0^1 (3t^2)^2 \, dt} = \sqrt{\frac{9}{4} t^4} \bigg|_0^1 = \sqrt{\frac{9}{4}} \)

(b) \(\| m - n \| = \| 3t^2 + t \| = \sqrt{\int_0^1 (3t^2 + t)^2 \, dt} = \sqrt{\frac{9}{4} t^4 + \frac{6}{3} t^3 + \frac{1}{3} t^2} \bigg|_0^1 = \sqrt{\frac{27}{10}} \)
Note: The standard inner product on \(\mathbb{R}^n \) is the dot product. So in \(\mathbb{R}^n \), we have the following facts.

- Two vectors \(\vec{u}, \vec{v} \in \mathbb{R}^n \) are orthogonal/perpendicular if \(\vec{u} \cdot \vec{v} = 0 \).
- The length of a vector \(\vec{v} \in \mathbb{R}^n \) is \(||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} \).
- A vector \(\vec{u} \in \mathbb{R}^n \) is a unit vector if the length of \(\vec{u} \) is 1, i.e., if \(||\vec{u}|| = 1 \).
- If \(\vec{u} \in \mathbb{R}^n \), then the vector \(\vec{u} = \frac{\vec{v}}{||\vec{v}||} \) is a unit vector in the same direction as \(\vec{v} \).
- A vector \(\vec{u} \in \mathbb{R}^n \) is orthogonal to a subspace \(V \) in \(\mathbb{R}^n \) if \(\vec{u} \) is orthogonal to every vector in \(V \), i.e., if \(\vec{u} \cdot \vec{v} = 0 \) for all \(\vec{v} \in V \).

Def: We say that a collection \(g_1, \ldots, g_m \) of elements in an inner product space \(V \) are orthonormal if they are unit vectors and if each one is orthogonal to the rest. In other words, the collection is orthonormal if

\[
\langle g_i, g_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

Ex: The standard basis vectors \(\vec{e}_1, \ldots, \vec{e}_n \in \mathbb{R}^n \) are orthonormal. (So they form an orthonormal basis of \(\mathbb{R}^n \)). Also, any subset of this collection is orthonormal.

Ex: Let \(\theta \) be any angle. Show that the vectors \(\begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix} \) and \(\begin{bmatrix} -\cos \theta \\ \sin \theta \end{bmatrix} \) are orthonormal in \(\mathbb{R}^2 \).

Unit vectors:
\[
\vec{u} \cdot \vec{v} = \sin^2 \theta + \cos^2 \theta = 1
\]
\[
\vec{w} \cdot \vec{w} = \cos^2 \theta + \sin^2 \theta = 1
\]

Orthogonal:
\[
\vec{u} \cdot \vec{v} = -\sin \theta \cos \theta + \cos \theta \sin \theta = 0.
\]

Ex: Show that the vectors
\[
\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1/2 \\ -1/2 \end{bmatrix}
\]
are orthonormal in \(\mathbb{R}^2 \).

Unit:
\[
\vec{u} \cdot \vec{u} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1
\]
\[
\vec{w} \cdot \vec{w} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1
\]

Orthogonal:
\[
\vec{u} \cdot \vec{w} = \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} = 0.
\]

Thm: Orthogonal vectors are linearly independent. So any set of \(n \) orthogonal vectors in a vector space \(V \) of dimension \(n \) is a basis for \(V \).

Recall: (Ch. 2) Let \(L \) be any line in \(\mathbb{R}^2 \). Any vector \(\vec{z} \in \mathbb{R}^2 \) can be written uniquely as \(\vec{z} = \vec{z}_p + \vec{z}_\perp \), where \(\vec{z}_p \) is parallel to \(L \) and \(\vec{z}_\perp \) is orthogonal to \(L \). Here \(\vec{z}_p \) is also denoted \(\text{proj}_L(\vec{z}) \).

Thm: Suppose \(g_1, \ldots, g_m \) is an orthonormal basis of a subspace \(W \) of an inner product space \(V \). Then the projection of an element \(f \) in \(V \) onto the subspace \(W \) is:

\[
\text{proj}_W f = \langle g_1, f \rangle g_1 + \cdots + \langle g_m, f \rangle g_m.
\]
Fact: Let W be a subspace of \mathbb{R}^n. Let $\{\vec{u}_1, \ldots, \vec{u}_m\}$ be an orthonormal basis of V. Then for any $\vec{x} \in \mathbb{R}^n$,
\[
\text{proj}_W(\vec{x}) = \vec{x}_W = (\vec{x} \cdot \vec{u}_1) \vec{u}_1 + \cdots + (\vec{x} \cdot \vec{u}_m) \vec{u}_m = \sum_{i=1}^{m} (\vec{x} \cdot \vec{u}_i) \vec{u}_i.
\]

Obs: Let V be the (xy)-plane in \mathbb{R}^3. Then $\{\vec{e}_1, \vec{e}_2\}$ is an orthonormal basis for V. Let $L_1 = \text{span}\{\vec{e}_1\}$ be the x-axis and let $L_2 = \text{span}\{\vec{e}_2\}$ be the y-axis. Then for any $\vec{x} \in \mathbb{R}^3$, $\text{proj}_V(\vec{x}) = \text{proj}_{L_1}(\vec{x}) + \text{proj}_{L_2}(\vec{x})$.

This is true in general: Let V be a subspace of \mathbb{R}^n. Let $\{\vec{u}_1, \ldots, \vec{u}_m\}$ be an orthonormal basis of V. Let $L_i = \text{span}(\vec{u}_i)$ for each i. Then
\[
\text{proj}_V(\vec{x}) = \sum_{i=1}^{m} (\vec{u}_i \cdot \vec{x}) \vec{u}_i = \sum_{i=1}^{m} \text{proj}_{L_i}(\vec{x}).
\]

Ex: Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$ and let $V = \text{Im}(A)$. Find $\text{proj}_V(\vec{x})$ for $\vec{x} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$.

1. Find an orthonormal basis for $V = \text{Im}(A)$:
$\vec{u}_1 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

2. $\text{proj}_V(\vec{x}) = (\vec{x} \cdot \vec{u}_1) \vec{u}_1 + (\vec{x} \cdot \vec{u}_2) \vec{u}_2 = \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \vec{u}_1 + \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \vec{u}_2 = \vec{u}_1 + \vec{u}_2$.

Thm: Let $\vec{u}_1, \ldots, \vec{u}_n$ be an orthonormal basis for \mathbb{R}^n. Then for any $\vec{x} \in \mathbb{R}^n$, $\vec{x} = (\vec{u}_1 \cdot \vec{x}) \vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x}) \vec{u}_n (\equiv \text{proj}_{\text{span}(\vec{u}_1})(\vec{x})))$.

Note: This means that if $\vec{u}_1, \ldots, \vec{u}_n$ is an orthonormal basis for \mathbb{R}^n, then $\vec{x} = \sum_{i=1}^{n} \text{proj}_{\text{span}(\vec{u}_i)}(\vec{x})$ for any $\vec{x} \in \mathbb{R}^n$.

Note: The theorem means that if B is an orthonormal basis for \mathbb{R}^n, then we now have a formula for finding the B-coordinates of any $\vec{x} \in \mathbb{R}^n$.

Ex: Consider the orthonormal basis $B = \left\{ \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} \right\}$ of \mathbb{R}^3. Find the B-coordinates of $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$.

Recall: $[\vec{x}]_B = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ where $\vec{x} = a \vec{u}_1 + b \vec{u}_2 + c \vec{u}_3 + d \vec{u}_4$.

Old method: solve these four linear equations.

New method: define $[\vec{x}]_S = \begin{bmatrix} 5 \\ 0 \\ -1 \\ -2 \end{bmatrix}$.
Recall: Let \(V \) be a subspace of \(\mathbb{R}^n \). The orthogonal complement of \(V \) is the set \(V^\perp \) of all vectors \(\bar{x} \in \mathbb{R}^n \) which are orthogonal to \(V \). (Note that \(V^\perp \) is the kernel of the orthogonal projection \(\text{proj}_V \) onto \(V \)).

Properties: Let \(V \) be a subspace of \(\mathbb{R}^n \).

1. Then \(V^\perp \) is a subspace of \(\mathbb{R}^n \).
2. \(V \cap V^\perp = \{0\} \).
3. \(\dim(V) + \dim(V^\perp) = n \).
4. \((V^\perp)^\perp = V \).

Pythagorean Theorem: Let \(\bar{x}, \bar{y} \in \mathbb{R}^n \). Then \(\bar{x} \perp \bar{y} \) if and only if \(||\bar{x} + \bar{y}||^2 = ||\bar{x}||^2 + ||\bar{y}||^2 \).

Proof:

\[
||\bar{x} + \bar{y}||^2 = (\bar{x} + \bar{y}) \cdot (\bar{x} + \bar{y}) = \bar{x} \cdot \bar{x} + \bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{x} + \bar{y} \cdot \bar{y}
\]
\[
= ||\bar{x}||^2 + 2\bar{x} \cdot \bar{y} + ||\bar{y}||^2
\]
\[
= ||\bar{x}||^2 + 0 + ||\bar{y}||^2
\]

\(\implies \)

\(\bar{x} \cdot \bar{y} = 0 \) (\(\bar{x} \perp \bar{y} \)).
Section 5.2: Gram-Schmidt Process and QR Factorization

Method: (The Gram-Schmidt Process) Let \(\vec{v}_1, \ldots, \vec{v}_n \) be a basis for a subspace \(V \) in \(\mathbb{R}^n \). Let

\[
\begin{align*}
\vec{w}_1 &= \vec{v}_1 \\
\vec{w}_2 &= \vec{v}_2 - \frac{\vec{v}_2 \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 \\
\vec{w}_3 &= \vec{v}_3 - \frac{\vec{v}_3 \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 - \frac{\vec{v}_3 \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_2 \\
&\vdots
\end{align*}
\]

Then \(\vec{w}_1, \ldots, \vec{w}_n \) is an orthogonal basis for \(V \).

Let \(\vec{u}_1 = \frac{\vec{w}_1}{||\vec{w}_1||}, \vec{u}_2 = \frac{\vec{w}_2}{||\vec{w}_2||}, \ldots \) Then \(\vec{u}_1, \ldots, \vec{u}_n \) is an orthonormal basis for \(V \).

Ex: Let \(B = \left\{ \vec{v}_1 = \begin{bmatrix} -3 \\ 4 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \). Then \(B \) is a basis for \(\mathbb{R}^2 \). Use the Gram-Schmidt process to find an orthonormal basis \(\mathcal{U} = \{ \vec{u}_1, \vec{u}_2 \} \) of \(\mathbb{R}^2 \).

\[
\begin{align*}
\vec{w}_1 &= \vec{v}_1 = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \\
\vec{w}_2 &= \vec{v}_2 - \frac{\vec{v}_2 \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{13}{17} \begin{bmatrix} -3 \\ 4 \end{bmatrix} = \begin{bmatrix} 13/17 \\ 6/17 \end{bmatrix} \\
\vec{u}_1 &= \frac{\vec{w}_1}{\|\vec{w}_1\|} = \frac{1}{\sqrt{17}} \begin{bmatrix} -3 \\ 4 \end{bmatrix} \\
\vec{u}_2 &= \frac{\vec{w}_2}{\|\vec{w}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 13/17 \\ 6/17 \end{bmatrix} = \begin{bmatrix} 13/17 \\ 6/17 \end{bmatrix}
\end{align*}
\]

Then \(\mathcal{U} = \{ \vec{u}_1, \vec{u}_2 \} \) is an orthonormal basis for \(\mathbb{R}^2 \) (can check).

Ex: Let \(V = \text{Im}(M) \) where \(M = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \).

1. Find an orthonormal basis for \(V \).

2. Find the change of basis matrix \(R \) from the basis \(B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \) to the basis \(\mathcal{U} \) found in 1.

\[
\begin{align*}
1. \quad \vec{w}_1 &= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\
\vec{w}_2 &= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \\ 0 \end{bmatrix}
\end{align*}
\]

(So \(\vec{v}_1, \vec{v}_2 \) were already orthonormal).

\[
\begin{align*}
\vec{u}_1 &= \frac{\vec{w}_1}{\|\vec{w}_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\
\vec{u}_2 &= \frac{\vec{w}_2}{\|\vec{w}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1/2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ 1/2 \sqrt{2} \\ 0 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathcal{U} &= \left\{ \begin{bmatrix} 1/\sqrt{2} \\ 1/2 \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ 1/2 \sqrt{2} \\ 0 \end{bmatrix} \right\} \\
R &= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}
\end{align*}
\]
Thm: \((QR\)-factorization\) Let \(M\) be an \(n \times m\) matrix with linearly independent columns \(\vec{v}_1, \ldots, \vec{v}_m\). Then there exists an \(n \times m\) matrix \(Q\) whose columns \(\vec{u}_1, \ldots, \vec{u}_m\) are orthonormal, and an upper triangular matrix \(R\) with positive diagonal entries, such that

\[M = QR \]

Furthermore, \(r_{jj} = \|\vec{u}_j\|, r_{ij} = \|\vec{v}_j\|\) for \(2 \leq j \leq m\), and \(r_{ij} = \vec{u}_i \cdot \vec{v}_j\) for \(i < j\).

Ex: Verify the \(QR\)-factorization theorem for the last example.

Let \(Q = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ \vec{v}_4 & \vec{v}_5 & \vec{v}_6 \end{bmatrix}, R = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{bmatrix}\).

Then \(QR = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 6 \\ 0 & 0 \end{bmatrix} = M\).

Ex: Find the \(QR\)-factorization of \(M = \begin{bmatrix} 2 & 2 \\ 1 & 1 \\ -2 & 1 \end{bmatrix}\).

\(\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\).

A) Gram-Schmidt to find columns \(\vec{u}_i\) of \(Q\):

1. \(\vec{\omega}_1 = \vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}\), \(\vec{\omega}_2 = \vec{v}_2 - \frac{\vec{v}_2 \cdot \vec{\omega}_1}{\vec{\omega}_1 \cdot \vec{\omega}_1} \vec{\omega}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} - \frac{9}{5} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2/5 \\ 4/5 \\ 9/5 \end{bmatrix}\).

2. \(\vec{u}_1 = \frac{\vec{\omega}_1}{\|\vec{\omega}_1\|} = \begin{bmatrix} 2/3 \\ 1/3 \\ -2/3 \end{bmatrix}\), \(\vec{u}_2 = \frac{\vec{\omega}_2}{\|\vec{\omega}_2\|} = \begin{bmatrix} 2/5 \\ 4/5 \\ 9/5 \end{bmatrix} = \begin{bmatrix} 2/5 \\ 4/5 \\ 9/5 \end{bmatrix}\).

\(Q = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \end{bmatrix} = \begin{bmatrix} 2/3 & 2/5 \\ 1/3 & 4/5 \\ -2/3 & 9/5 \end{bmatrix}\).

B) \(R = \begin{bmatrix} [\vec{v}_1]_{\vec{u}_1} & [\vec{v}_2]_{\vec{u}_1} \\ [\vec{v}_1]_{\vec{u}_2} & [\vec{v}_2]_{\vec{u}_2} \end{bmatrix}\):

\([\vec{v}_1]_{\vec{u}_1} = (\vec{u}_1, \vec{v}_1) \vec{u}_1 = 3 \vec{u}_1 + 0 \vec{u}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}\).

\([\vec{v}_2]_{\vec{u}_1} = (\vec{u}_1, \vec{v}_2) \vec{u}_1 = 3 \vec{u}_1 + \sqrt{5} \vec{u}_2 = \begin{bmatrix} 3 \\ \sqrt{5} \end{bmatrix}\).

\(R = \begin{bmatrix} 3 & 3 \\ 0 & \sqrt{5} \end{bmatrix}\).

C) Check! \(QR = MV\).
Section 5.3: Orthogonal Transformations and Orthogonal Matrices

Def: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is called an orthogonal linear transformation if T preserves the lengths of vectors, i.e. if

$$
\| T(\vec{x}) \| = \| \vec{x} \| \quad \text{for all} \quad \vec{x} \in \mathbb{R}^n
$$

Ex: The rotation by θ matrix $T(\vec{x}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \vec{x}$ of \mathbb{R}^2 is an orthogonal transformation.

Ex: Let V be a subspace of \mathbb{R}^n. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the transformation which reflects each vector across the subspace V. Then for all $\vec{x} \in \mathbb{R}^n$, $T(\vec{x}) = \text{ref}_V(\vec{x}) = \vec{x}_0 - \vec{x}_0$. Show that T is orthogonal.

$$
\| T(\vec{x}) \| = \| \vec{x}_0 - \vec{x}_0 \| = \| \vec{x}_0 \| = \| \vec{x}_0 \| = \| \vec{x}_0 + \vec{x}_0 \| \quad \text{by Pyth. Thm}.
$$

Thm: 1. A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if the vectors $T(\vec{e}_1), \ldots, T(\vec{e}_n)$ form an orthonormal basis for \mathbb{R}^n.

2. An $n \times n$ matrix A is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n.

Ex: Is the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ orthogonal?

No: the columns are orthogonal, but they aren't unit vectors.

Ex: Is the matrix $A = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$ orthogonal?

Yes: the columns are orthogonal and they are unit vectors, so the columns are orthonormal $\Rightarrow A$ is orthogonal.

Thm: Suppose A and B are orthogonal matrices. Then A^{-1} and AB are orthogonal. In other words, inverses and products of orthogonal matrices are orthogonal.

Def: An $n \times n$ matrix A is symmetric if $A^T = A$, and skew-symmetric if $A^T = -A$.

Ex: The matrix A below is symmetric and the matrix B below is skew-symmetric.

$$
A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 2 & 3 \\ 3 & 2 & 2 & 1 \\ 4 & 3 & 1 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}
$$
Ex: Find all 2×2 skew-symmetric matrices.

If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is skew-symmetric, then $A^T = -A$, i.e., $\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} -a & b \\ -c & -d \end{bmatrix}$

$a = -a \Rightarrow a = 0$
$d = -d \Rightarrow d = 0$

$\Rightarrow A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$

$10 = -c$

Thm: An $n \times n$ matrix A is orthogonal if and only if $A^T A = I_n$, i.e., if and only if $A^{-1} = A^T$.

Summary: Let A be an $n \times n$ matrix. Then the following are equivalent:

1. A is an orthogonal matrix.
2. The transformation $L(\mathbf{x}) = A\mathbf{x}$ preserves length, $||A\mathbf{x}|| = ||\mathbf{x}||$ for every $\mathbf{x} \in \mathbb{R}^n$. (def.)
3. The columns of A form an orthonormal basis of \mathbb{R}^n. (Thm 1)
4. $A^T A = I_n$. (Def 2)
5. $A^{-1} = A^T$. (Def 2)

Properties: of A^T and A^{-1}: Let A and B be $n \times n$ matrices. If A is symmetric, B is skew-symmetric, $A + B$ commutes, $\text{then} B^T A = (-B)A = -(AB)$

Thm: Let V be a subspace of \mathbb{R}^n with orthonormal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$. The linear transformation $T(\mathbf{x}) = \text{proj}_V(\mathbf{x})$ has standard matrix QQ^T where $Q = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$.

Ex: Find the matrix of orthogonal projection onto the subspace of \mathbb{R}^4 spanned by the vectors

$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, \hspace{1cm} $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$

$B = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$ is an orthonormal basis of this subspace.

So proj_V has matrix $QQ^T = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v}_2 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

i.e., $\text{proj}_V(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^4$.