INTEGRALS, VOLUMES AND CENTERS OF MASS

In the problems below, we continue using the familiar functions

 $h(x,y) := xy, \ e(x,y) := (\sin x)(\sin y), \ \text{and} \ p(x,y) := x^5 - y^4,$

and the familiar subdomains of the (x, y)-plane \mathbf{R}^2 :

- the unit square $Q^2 := [0,1] \times [0,1] = \{(x,y) \mid 0 \le x, y \le 1\},\$
- the unit disk $D^2 := \{(x, y) \mid x^2 + y^2 \le 1\}$, and the first quadrant of the unit disk $Q^2 \cap D^2 = \{(x, y) \mid 0 \le x, y, x^2 + y^2 \le 1\}$.

We will explore the 3-dimensional regions R between their graphs in \mathbf{R}^3 and various subdomains P of \mathbf{R}^2 which we view as the plane $\{z = 0\} \subset \mathbf{R}^3$.

For *each* problem:

- Express the volume of R as an integral over P, and evaluate it as an iterated integral. [Hint: for some problems we may need to figure out P, or make substitutions, or use polar coordinates...!]
- Find the center of mass $(\bar{x}, \bar{y}, \bar{z})$ for the region R, where \bar{f} means the average of the function f over the region R. [Hint: symmetry helps check \bar{x} or \bar{y} without computation of integrals; \bar{z} is trickier to compute: reduce it to (a multiple of) the integral over P of the square of the function whose graph defines R!

Problem 0.1. Let $R \subset \mathbf{R}^3$ be the region between $P = Q^2 = [0, 1] \times [0, 1] \subset \mathbf{R}^2$ and graph(h).

[Hint: both h and $P = Q^2$ are symmetric with respect to the line $\{x = y\}$!]

Problem 0.2. Let $R \subset \mathbf{R}^3$ be the region between $P = Q^2 \cap D^2$ and graph(h).

[Hint: consider polar coordinates as well as symmetry with respect to $\{x = y\}$!]

Problem 0.3. Let $R \subset \mathbf{R}^3$ be the region between $P = \pi Q^2 = [0, \pi] \times [0, \pi] \subset \mathbf{R}^2$ (the unit square rescaled by π) and graph(e).

[Hint: symmetry with respect to $\{x = y\}$ as well as $\{x = \frac{\pi}{2}\}$ and $\{y = \frac{\pi}{2}\}$; the integral $\int \sin^2 t \, dt$ over a half-period is easy to compute!

Problem 0.4. Let $R \subset \mathbf{R}^3$ be the region between graph(p) and $P = \{(x, y) \mid p(x, y) \geq 0\} \cap Q^2$, the subdomain of the unit square where p is non-negative.

[Hint: first find the curved part of the boundary of P where p(x,y) = 0; this gives limits of integration depending on the order one does the iterated integral; one order is much easier than the other, but Fubini's Theorem certifies they are equal (you can try both orders and verify this if you like)!]

ROB KUSNER, MATHEMATICS & STATISTICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA 01003, USA E-mail address: profkusner@gmail.com

Date: 16 Sep 2019.