PRACTICE WITH PATH INTEGRALS

Recall that a path \mathcal{P} is a continuous function (a map or parametrization) $\mathbf{X} : [a, b] \to R \subset \mathbf{R}^n$ from an interval $[a, b] \subset \mathbf{R}$ into a region R of n-space, and a loop is a path with $\mathbf{X}(a) = \mathbf{X}(b)$. Often we take the interval to be [0, 1], and we normally assume the path \mathcal{P} is C^1 , that is, the velocity $\mathbf{X}'(t) = (x'_1(t), \dots, x'_n(t))$ of its parametrization is a continuous \mathbf{R}^n -valued function of $t \in [0, 1]$. Sometimes we will abuse notation, conflating the path (which is parametrized and thus oriented) with its image and writing $\mathcal{P} = {\mathbf{X}(t) | t \in [0, 1]}.$

The *path integral* along \mathcal{P} is defined by

$$\int_{\mathcal{P}} \mathbf{V} \cdot d\mathbf{X} := \int_{0}^{1} \mathbf{V}(\mathbf{X}(t)) \cdot \mathbf{X}'(t) dt = \int_{0}^{1} (v_1(\mathbf{X}(t))x_1'(t) + \dots + v_n(\mathbf{X}(t))x_n'(t)) dt$$
we confield $\mathbf{V} = \mathbf{V}(\mathbf{X}) = (v_1(x_1, \dots, x_n))$ on $B \subset \mathbf{B}^n$

for any vectorfield $\mathbf{V} = \mathbf{V}(\mathbf{X}) = (v_1(x_1, \dots, x_n), \dots, v_n(x_1, \dots, x_n))$ on $R \subset \mathbf{R}^n$. Consider these paths in \mathbf{R}^3

 $\mathcal{L} := \{ \mathbf{X}(t) := (4t, 2t, 5t) \, | \, t \in [0, 1] \} \text{ (a line segment)}$

 $\mathcal{T} := \{ \mathbf{X}(t) := (4t, 2t^2, 5t^3) \mid t \in [0, 1] \} \text{ (part of a twisted cubic curve)}$

 $\mathcal{H} := \{ \mathbf{X}(t) := (\cos t, \sin t, t) \, | \, t \in [0, 2\pi] \} \text{ (part of helix - note the interval)}$

 $\mathcal{S} := \{ \mathbf{X}(t) := (\cos t, \sin t, 0) \mid t \in [0, 2\pi] \} = S^1 \text{ (the unit circle - again, note the interval)}$

and these vector fields on (a region of) \mathbf{R}^3

$$\mathbf{U} := (1, 0, 0) = \mathbf{e}_1$$
$$\mathbf{V} := (x_2 x_3, x_1 x_3, x_1 x_2) = x_2 x_3 \mathbf{e}_1 + x_1 x_3 \mathbf{e}_2 + x_1 x_2 \mathbf{e}_3$$
$$\mathbf{W} := (-x_2, x_1, 0) = -x_2 \mathbf{e}_1 + x_1 \mathbf{e}_2$$
$$\mathbf{T} := (-x_2, x_1, 0) / (x_1^2 + x_2^2) = \mathbf{W} / \rho^2 = \nabla \theta$$

Problem 0.1. Compute $\int_{\mathcal{L}} \mathbf{U} \cdot d\mathbf{X}$ and $\int_{\mathcal{T}} \mathbf{U} \cdot d\mathbf{X}$. Are your answers the same? Why or why not? [Hint: Is **U** the gradient of a function?]

Problem 0.2. Compute $\int_{\mathcal{L}} \mathbf{V} \cdot d\mathbf{X}$ and $\int_{\mathcal{T}} \mathbf{V} \cdot d\mathbf{X}$. Are your answers the same? Why or why not?

Problem 0.3. Compute $\int_{\mathcal{H}} \mathbf{U} \cdot d\mathbf{X}$ and $\int_{\mathcal{S}} \mathbf{U} \cdot d\mathbf{X}$. Are your answers the same? Why or why not?

Problem 0.4. Compute $\int_{\mathcal{H}} \mathbf{W} \cdot d\mathbf{X}$ and $\int_{\mathcal{S}} \mathbf{W} \cdot d\mathbf{X}$. Are your answers the same? Why or why not?

Problem 0.5. Compute $\int_{\mathcal{H}} \mathbf{T} \cdot d\mathbf{X}$ and $\int_{\mathcal{S}} \mathbf{T} \cdot d\mathbf{X}$. Are your answers the same? Why or why not?

Problem 0.6 (Extra Credit). What happens to your answers for the previous three problems if you reparametrize the helix by $\mathcal{H} := \{\mathbf{X}(t) := (\cos 2\pi t, \sin 2\pi t, 2\pi t) \mid t \in [0, 1]\}$ or the unit circle by $\mathcal{S} := \{\mathbf{X}(t) := (\cos 2\pi t, \sin 2\pi t, 0) \mid t \in [0, 1]\}$? Explain!

ROB KUSNER, MATHEMATICS & STATISTICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA 01003, USA *E-mail address*: profkusner@gmail.com

Date: 14 Oct 2019.