PRACTICE WITH DIFFERENTIAL FORMS

The following problems concern these differential forms on the domain $R = \mathbb{R}^4 = \{(t, x, y, z)\}:$ $\alpha := x \ dy + z \ dt \in \Omega^1(R), \quad \beta := dt \wedge dx + dy \wedge dz \in \Omega^2(R), \quad \gamma := \sin t \ dx \wedge dy \wedge dz \in \Omega^3(R).$

Problem 0.1. Find their exterior derivatives $d\alpha$, $d\beta$, and $d\gamma$.

Problem 0.2. Compute their exterior squares: $\alpha \wedge \alpha$, $\beta \wedge \beta$, and $\gamma \wedge \gamma$. Why are some of these automatically 0?

Problem 0.3. Compare the exterior products $\alpha \land \beta$, $\alpha \land \gamma$, $\beta \land \gamma$ with $\beta \land \alpha$, $\gamma \land \alpha$, $\gamma \land \beta$.

Problem 0.4. Work out the exterior derivatives $d(\alpha \wedge \beta)$ and $d(\beta \wedge \alpha)$, both directly and by using the Leibniz formula for the wedge product of forms. How do they compare?

Problem 0.5. Compute the exterior derivative $d(\alpha \wedge \gamma)$. In retrospect, can you explain why you should have expected this result?!

ROB KUSNER, MATHEMATICS & STATISTICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA 01003 *E-mail address*: profkusner@gmail.com

Date: 04 Nov 2019.