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1. Gradient and Chain Rule. First a reminder about the gradient ∇f of a smooth
function f . In Rn, the gradient operator or grad has the form

∇ =


∂
∂x1
...
∂
∂xn

 =

 ∂x1
...
∂xn


Consider the special case of a function f on R2, where ∇f =

[
fx
fy

]
. For any (x∗, y∗) in

the domain, ∇f(x∗, y∗) gives a vector which points in the direction of the greatest increase
whose �tail� is based at the point (x∗, y∗). As the basepoint (x∗, y∗) varies, so does∇f(x∗, y∗),
giving a �vector�eld� ∇f on R2. (More about vector�elds later.)
One important property of gradient is that ∇f is perpendicular to the level sets of f .

Proof. A proof will be shown in R3, but can be easily generalized to Rn.
Consider a level surface {(x, y, z) : f(x, y, z) = c} of f on R3, and take a point P∗ =

(x∗, y∗, z∗) that lies on this level surface, that is, f(x∗, y∗, z∗) = c. Any curve ~p(t) =
(x(t), y(t), z(t)) on the level surface with ~p(t∗) = P∗ = (x∗, y∗, z∗) de�nes a tangent vec-
tor ~p ′(t∗) =

〈
x′(t∗), y

′(t∗), z
′(t∗)

〉
to the level surface of f at P∗.

On the other hand, composing ~p with f yields a constant function g(t) = f(~p(t)) =
f(x(t), y(t), z(t)) = c, so di�erentiating g(t) = c with respect to t using the chain rule gives
the equation

dg

dt
=
∂f

∂x

∣∣∣∣
P∗

dx

dt

∣∣∣∣
t∗

+
∂f

∂y

∣∣∣∣
P∗

dy

dt

∣∣∣∣
t∗

+
∂f

∂z

∣∣∣∣
P∗

dz

dt

∣∣∣∣
t∗

= 0

Then, 〈
∂f

∂x

∣∣∣∣
P∗

,
∂f

∂y

∣∣∣∣
P∗

,
∂f

∂x

∣∣∣∣
P∗

〉
·
〈
dx

dt

∣∣∣∣
t∗

,
dy

dt

∣∣∣∣
t∗

,
dz

dt

∣∣∣∣
t∗

〉
= 0⇐⇒ ∇f

∣∣
P∗
· ~p ′(t∗) = 0

The vanishing dot product means any tangent vector ~p ′(t∗) to the level surface of f at P∗ is
perpendicular to ∇f

∣∣
P∗
. �
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2. Directional Derivatives and Chain Rule. If we de�ne the derivative operator

D := ∇T =
[
∂x1 · · · ∂xn

]
then the derivative of function f on Rn is the 1× n matrix �eld

D(f) :=
[
fx1 · · · fxn

]
.

For a general vector ~v =
〈
v1, v2, · · · , vn

〉
, the derivative of f along ~v is

D~vf = D(f)~v = ∇f · ~v.
For a function g(x, y) and vector ~v =

〈
v1, v2

〉
in R2,

D~vg =
[
gx gy

] [ v1
v2

]
= ∇g · ~v = gxv1 + gyv2.

Remark. Though some authors assume ~v must be a unit vector, it need not be. The length
of the vector a�ects the value of the directional derivative of f : though ~v1 =

〈
1, 1
〉
and

~v2 =
〈
2, 2
〉
point in the same direction, the latter would produce a value of the directional

derivative twice as big; in fact, you should check that our version of the directional derivative
scales according to Da~vf = aD~vf for any real number a ∈ R.

Suppose instead of a vector, ~v =
〈
v1, v2

〉
, we are given a path ~p(t) =

〈
x(t), y(t)

〉
. If we

have a function f in R2, then the height of its graph z = f(x, y) gives a height function
z(t) = f(x(t), y(t)) whose rate of change

z′(t) = D~p ′(f) = ∇f · ~p ′

where ~p ′ =
[

d
dt
x d

dt
y
]

=
[
xt yt

]
.

3. Hessian Matrix. Next we consider the second derivative or Hessian matrix ∇D(f). For
f on R2,

Hess(f) := ∇D(f) =

[
∂x

∂y

] [
fx fy

]
=

[
fxx fyx
fxy fyy

]
and

trace(Hess(f)) := fxx + fyy.

The Hessian of a function f on Rn is an n×n matrix, while ∇f is an n×1 matrix and D(f)
is a 1× n matrix.

Example. Find Hess(g) and trace(Hess(g)) for g(x, y) = sin(x2 + y2).

Solution: Hess(g) =

[
∂2x(sin(x2 + y2)) ∂x∂y(sin(x2 + y2))

∂y∂x(sin(x2 + y2)) ∂2y(sin(x2 + y2))

]

=

[
2 sin(x2 + y2) + 4x2 cos(x2 + y2) −4xy sin(x2 + y2)

−4xy sin(x2 + y2) 2 sin(x2 + y2) + 4y2 cos(x2 + y2))

]

trace(Hess(g)) = ∂2x(sin(x2 +y2))+∂2y(sin(x2 +y2)) = 4 sin(x2 +y2)+4(x2 +y2) cos(x2 +y2))
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Figure 1. f(x, y) = x2 − y2

Note that gxy = gyx � this is Clairut's Theorem, true for any su�ciently smooth function
g � and thus at any point (x∗, y∗) the matrix Hess(g) = Hess(g)T is symmetric. From
linear algebra, this means Hess(g) is diagonalizable with respect to an orthornormal basis of
eigenvectors, and it has real eigenvalues.
Challenge: �nd an insu�ciently smooth function whose Hessian is not symmetric!

4. Critical Points and Lagrange Multipliers. Critical points are points that are candi-
dates for being maxima, minima, or saddle points on a surface. As a reminder, saddle points
occur when there is a maximum in one direction and a minimum in another direction. A
classic example of a saddle is the function f(x, y) = x2 − y2 seen in Figure 1.

For a function f(x) of one variable, the critical points x∗ are where f ′(x∗) = 0. For
a function f(x, y) on R2, �nding the critical points (x∗, y∗) means solving two equations:
both fx(x∗, y∗) = 0 and fy(x∗, y∗) = 0 are satis�ed; or equivalently, the gradient vector�eld

vanishes: ∇f = ~0.

Example. Using the same equation referenced in Sec. 3, g(x, y) = sin(x2 + y2), �nd all
critical points.

Solution: ∇g =

[
gx
gy

]
=

[
2x cos(x2 + y2)
2y cos(x2 + y2)

]
gx = 0 when x = 0 or x2 + y2 = nπ/2, where n ∈ 2Z + 1, the set of all odd numbers.

gy = 0 when y = 0 or x2 + y2 = nπ/2, where n ∈ 2Z + 1.

Thus the critical points are (0, 0) and all points along the in�nitely many circles de�ned by
x2 + y2 = nπ/2, where n ∈ 2Z + 1 is odd. This periodic behavior can be seen in the graph
of g(x, y) given by Figure 2.
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Figure 2. g(x, y) = sin(x2 + y2)

Remark. Remember that cos, sin, tan and their inverses are periodic functions, that is that
cos(π/2) = cos(3π/2) = cos(nπ/2)∀n ∈ 2Z + 1, sin(0) = sin(π) = sin(nπ)∀n ∈ Z and so
on. This means that functions involving sin, cos and other trig functions can easily have
in�nitely many critical points and the rules for those critical points must be noted when
�nding all critical points, similar to how we de�ned the equations for the circles in the above
example.

We have been able to �nd global maxima and minima using ∇f = ~0, but what if we have
a speci�ed domain? For example, what if we want to �nd the critical points of f(x, y) = xy,
but only along the curve 3x2 + y2 = 6? The Lagrange multipliers method helps us maximize
or minimize functions like f(x, y, z) with a given constraint like g(x, y, z) = c.
The method involves solving the following system of equations,

fx(x, y, z) = λgx(x, y, z)
fy(x, y, z) = λgy(x, y, z)
fz(x, y, z) = λgz(x, y, z)
g(x, y, z) = c

where λ is a scalar. It is very important to be sure to exhaust all possiblities, which can be
a tedious task. A few tips include:

(1) Since λ is an arbitrary scalar, solve for λ in terms of x, y, and z to eliminate λ from
the equations

(2) Solve for one variable in terms of the others
(3) Remember that whenever you take a square root, consider both the positive and

negative square roots
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Figure 3. f(x, y) = xy

(4) Remember that whenever you divide an equation by an expression, you must be sure
that the denominator is not zero. You could split the problem into two cases, solving
while assuming that the expression is 0 and solving while assuming the expression is
not zero

(5) Remember, as notted above, that sin, cos, tan, arcsin, . . . , are periodic functions and
you must consider all multiples of π, π/2, or any other relevant multiple to ensure
you have covered all possible cases (Hint : examine di�erent cases of odd or even
multiples)

Remark. There's an interesting and important �application� of Lagrange multipliers to the
problem of �nding critical points for a quadratic function q(~x) on Rn constrained to the
(n − 1)-sphere of unit vectors. Generically there will be exactly n pairs of critical points
{± ~u1, · · · ,± ~un}, where each such pair corresponds to a (unit length) eigenvector ~ui of the
symmetric n×n matrix S de�ning the given quadratic function via q(~x) := ~x ·S~x. The cor-
responding eigenvalue λi = q(~ui). (Maybe that's why λ is used for both Lagrange multipliers
and eigenvalues?!)

Example. Use Lagrange multipliers to �nd all critical points of f(x, y) = xy, seen in
Figure 3 on the curve 3x2 + y2 = 6.
We must solve the following system:

y = λ6x
x = λ2y

3x2 + y2 = 6

While (0, 0) solves the �rst two equations, it does not solve the third. Trying tip (1) on the
�rst equation gives λ = y/6x. Suppose we use x = 0, then based on the third constraint
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equation, y = ±
√

6, but this would not satisfy the �rst two equations. Thus x = 0 is not
part of any critical point and we can use λ = y/6x without any issues. Plugging λ = y/6x
into the second equation gives x = y2/3x which then gives 3x2 = y2. This �ts nicely into
our constraint equation yielding 2y2 = 6 or 6x2 = 6 where both yield the same results. First
taking 2y2 = 6 gives y = ±

√
3. Plugging this into the original constraint equation gives

x = ±1. Now we have 4 possible critical points, (−1,−
√

3), (−1,
√

3), (1,−
√

3), and (1,
√

3).
Solving for λ in the second equation yields the exact same results. Knowing that 3x2+y2 = 6
is the equation for an ellipse along with looking at the graph of f(x, y), whose saddle-like
nature is given in Figure 3, only 4 critical points are expected. So, all of the critical points
along the curve are (−1,−

√
3), (−1,

√
3), (1,−

√
3), and (1,

√
3).

Now that we know how to �nd all critical points, we must identify these as maxima,
minima, saddle points or otherwise.

If you are only tasked with �nding global maxima and minima of a function, then you
only need to plug your critical points into the original function and �nd which points give
the largest and smallest function value.
If you are tasked with �nding and identifying all critical points, the Hessian is used in a

similar way as the second derivative test is for functions on R.



CRITICAL POINTS, CONVEXITY AND INTEGRALS (DRAFT!) 7

For a function f(x, y) and a critical point (x∗, y∗),

if det(Hess(f(x∗, y∗)) > 0 and hxx(x∗, y∗), hyy(x∗, y∗) < 0, then (x∗, y∗) is a local maximum
if det(Hess(f(x∗, y∗)) > 0 and hxx(x∗, y∗), hyy(x∗, y∗) > 0, then (x∗, y∗) is a local minimum
if det(Hess(f(x∗, y∗)) < 0, then (x∗, y∗) is a saddle point

In another way, if the Hessian is positive de�nite at (x∗, y∗), that is if the Hessian has
positive eigenvalues, then (x∗, y∗) is a local minimum. If the Hessian is negative de�nite
at (x∗, y∗), the Hessian has negative eigenvalues, then (x∗, y∗) is a local maximum. If the
Hessian has both positive and negative eigenvalues at (x∗, y∗), then (x∗, y∗) is a saddle point.
The only other possibility is the zero determinant. If this occurs at (x∗, y∗), then the Hessian
is degenerate and the test is inconclusive.

Example. Let f(x, y) = x4 − 8x2 + y4 − 18y2.

(1) Find the critical points of f(x, y)
(2) Identify the critical points as maxima, minima, saddle points or degenerate
(3) Find the global minima of f(x, y)
(4) Does f(x, y) have a global maximum? Justify your answer

Solution: (1) First to �nd the critical points. ∇f =

[
4x3 − 16x

4y3 − 36y

]
Factoring fx and fy gives fx = 4x(x2 − 4) and fy = 4y(y2 − 9). From there, we get 9

critical points: (−2,−3), (−2, 0), (−2, 3), (0,−3), (0, 0), (0, 3), (2,−3), (2, 0), and (2, 3).

(2) Hess(f) =

[
12x2 − 16 0

0 12y2 − 36

]
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Now to test each critical point:

(−2,−3) :

[
32 0

0 72

]
, det(Hess) > 0 and fxx > 0, so (−2,−3) is a local minimum

(−2, 0) :

[
32 0

0 −36

]
, det(Hess) < 0, so (−2, 0) is a saddle point

(−2, 3) :

[
32 0

0 72

]
, det(Hess) > 0 and fxx > 0, so (−2, 3) is a local minimum

(0,−3) :

[
−16 0

0 72

]
, det(Hess) < 0, so (0,−3) is a saddle point

(0, 0) :

[
−16 0

0 −36

]
, det(Hess) > 0 and fxx < 0, so (0, 0) is a local maximum

(0, 3) :

[
−16 0

0 72

]
, det(Hess) < 0, so (0, 3) is a saddle point

(2,−3) :

[
32 0

0 72

]
, det(Hess) > 0 and fxx > 0, so (2,−3) is a local minimum

(2, 0) :

[
32 0

0 −36

]
, det(Hess) < 0, so (2, 0) is a saddle point

(2, 3) :

[
32 0

0 72

]
, det(Hess) > 0 and fxx > 0, so (2, 3) is a local minimum

(3) Using the local minima found in (2), we will plug them back into the original equation to
see which are global minima. Since f(x, y) has only even coe�cients, f(−2,−3) = f(−2, 3) =
f(2,−3) = f(2, 3) = 16−32+81−182, and thus all the local minima are the global minima.

(4) Since f(x, y) has strictly even coe�cients, this means the function grows unbounded
as x→ ±∞ and y → ±∞, thus (0, 0) is only local maxima.

Lastly, the Hessian can also be used to test the convexity of a function. Instead of testing
individual points found using ∇f = 0, like when identifying critical points, you will be
�nding where on the graph det(Hess(f)) > 0 and where det(Hess(f)) < 0.

Example. Let f(x, y) = x4− 8x2 + y4− 18y2. Identify where the graph of f is convex-up,
convex-down (concave) or otherwise.

Solution: Hess(f) =

[
12x2 − 16 0

0 12y2 − 36

]
We are tasked with �nding where det(Hess(f)) < 0 and where det(Hess(f)) > 0.
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det(Hess(f)) = 48(3x2−4)(y2−3) = 0 when y = ±
√

3 or x = ±
√

4
3
which means we have

9 cases to check:

(1) y > +
√

3 and x > +
√

4
3

(2) y > +
√

3 and +
√

4
3
> x > −

√
4
3

(3) y > +
√

3 and x < −
√

4
3

(4) +
√

3 > y > −
√

3 and x > +
√

4
3

(5) +
√

3 > y > −
√

3 and +
√

4
3
> x > −

√
4
3

(6) +
√

3 > y > −
√

3 and x < −
√

4
3

(7) y < −
√

3 and x > +
√

4
3

(8) y < −
√

3 and +
√

4
3
> x > −

√
4
3

(9) y < −
√

3 and x < −
√

4
3

One bene�t of our function is that since both x and y are squared, the sign on the number
does not matter, only the magnitude does. Thus, we only have 4 cases:

(1) y >
√

3 and x >
√

4
3

(2) y >
√

3 and
√

4
3
> x > 0

(3)
√

3 > y > 0 and x >
√

4
3

(4)
√

3 > y > 0 and
√

4
3
> x > 0

(1) Since det(Hess(f)) > 0 and fxx and fyy are both positive, the graph is convex-up.
(2) Since det(Hess(f)) < 0, the graph is saddle-like.
(3) Since det(Hess(f)) < 0, the graph is saddle-like.
(4) Since det(Hess(f)) > 0 and fxx and fyy are both negative, the graph is convex-down

(concave).

5. Problem Set I. The following problems concern the functions

h(x, y) := xy, e(x, y) := (sin x)(sin y), f(x, y) := sin(xy) and p(x, y) := x5 − y4

on R2 (or on the speci�ed subdomains). We have explored h and p in class, whose graphs
resemble a saddle and the weird pen-holder we passed around in class; the graph of e should
remind you of the egg-crate we also passed around, and you are welcome to draw or describe
the graph of f for extra credit!

Problem 5.1. Suppose you're hiking along the graph of the function h above the path
(x(t), y(t)) := (t2, t3) in R2. At what rate is your height z(t) = h(x(t), y(t)) changing when
t = 0? At what rate is it changing when t = 1? (You can do this various ways, but make
sure one of the ways uses the chain rule and directional derivatives!)
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Problem 5.2. For the functions e and f above, compute their various �rst and second partial
derivatives (as functions of (x, y)), as well as their gradient vector �elds and Hessian matrix
�elds (whose entries are also functions of (x, y) � we did this in class for the functions h
and p). Find all the critical points for both e and f , and use their Hessians there to analyze
whether these critical points are (local) minima, maxima, saddles or otherwise.

Problem 5.3. We saw (in class) that the only critical point of the function p is at (0, 0)
(it's degenerate � its Hessian is the zero matrix there), but we can also use its Hessian to
�nd where the graph of p is convex-up, convex-down (concave) or otherwise � do that!

Problem 5.4. Find all the global maximum and global minimum points and values of the
function h above restricted to the unit square Q2 := [0, 1]× [0, 1]. Do the same for the unit
disk D2 = {(x, y) | x2 + y2 ≤ 1}.

6. Basic Integrals. This section will be a review of double and triple integrals from Cal-
culus 2. As you should remember, double and triple integrals are not much more di�cult
than a single integral. They are simply computing two or three integrals in a row rather
than one. In some important special cases, they turn out to be products of single integrals,
just like the simple way we might compute the area of a rectangle or volume of a box.

Example. For the unit square Q2 := [0, 1] × [0, 1] = {(x, y) | 0 ≤ x, y ≤ 1}, �nd∫∫
Q2

f(x, y) dx dy for f(x, y) = x4 − 8x2 + y4 − 18y2

Solution:
∫∫
Q2

x4 − 8x2 + y4 − 18y2 dx dy =
∫ y=1

y=0

[ ∫ x=1

x=0
x4 − 8x2 + y4 − 18y2 dx

]
dy

=
∫ y=1

y=0

[
1
5
x5 − 8

3
x3 + xy4 − 18xy2

∣∣∣x=1

x=0

]
dy =

∫ y=1

y=0

[
1
5
− 8

3
+ y4 − 18y2

]
dy

=
∫ y=1

y=0
y4 − 18y2 − 37

15
dy = 1

5
y5 − 6y3 − 37

15
y
∣∣y=1

y=0
= 1

5
− 6− 37

15
= −124

15

In certain cases, Fubini's Theorem can help simplify complicated, iterated integrals; it
holds much more generally (not just for rectangular boxes).

Fubini's Theorem: If f(x, y) is continuous over the region, R, de�ned by a ≤ x ≤ b and
c ≤ y ≤ d, then∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

This simply means that the order of integration does not matter. Let's take the same
example from above and reverse the integration order:

Example. For the unit square Q2 := [0, 1] × [0, 1] = {(x, y) | 0 ≤ x, y ≤ 1}, �nd∫∫
Q2

f(x, y) dy dx for f(x, y) = x4 − 8x2 + y4 − 18y2
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Figure 4. The green shaded region in the �rst quadrant between {y = x2}
and {y = 3}.

Solution:
∫∫
Q2

x4 − 8x2 + y4 − 18y2 dx dy =
∫ x=1

x=0

[ ∫ y=1

y=0
x4 − 8x2 + y4 − 18y2 dy

]
dx

=
∫ x=1

x=0

[
x4y − 8x2y + 1

5
y5 − 6y3

∣∣y=1

y=0

]
dx =

∫ x=1

x=0

[
x4 − 8x2 + 1

5
− 6

]
dx

=
∫ x=1

x=0
x4 − 8x2 + 29

5
dx = 1

5
x5 − 8

3
x3 − 29

5
x
∣∣∣x=1

x=0
= 1

5
− 8

3
− 29

5
= −124

15

Being able to change the order of integration can help simplify problems. For example,
suppose instead of integrating over Q2 = [0, 1] × [0, 1] = {(x, y) | 0 ≤ x, y ≤ 1}, we had to
integrate over a region P := [0, 1] ×

[
1√
2
, 9
4

]
= {(x, y) | 0 ≤ x ≤ 1, 1√

2
≤ y ≤ 9

4
}. It would

probably be simpler to integrate with respect to x �rst instead of dealing with the messy
fractions of the y bound before the end.
Fubini's Theorem also holds for domains which are not rectangular, but here one needs

to use more care in expressing the limits of integration in an iterated integral � indeed,
changing the order can turn a tricky integral into child's play, or turn an intractible integral
into one that's doable. (Of course, it can go the other way as well if one is careless!)

For example, suppose we look at a region P in the �rst quadrant between the graphs
{y = x2} and {y = 3}, the shaded area in Figure 4. The region can be de�ned in two
di�erent but equivalent ways: P = {(x, y) | 0 ≤ x ≤ √y, 0 ≤ y ≤ 3} or P = {(x, y) | x2 ≤
y ≤ 3, 0 ≤ x ≤

√
3}. If we integrate a function f(x, y) over P with respect to x �rst, we

use the �rst representation of the region P , since the interval of x integration depends on y
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(and because the limits of the x-integral cannot have the x variable left in them):∫ 3

0

∫ √y
0

f(x, y) dxdy.

Similarly, the second representation of the region P is used if we integrate with respect to y
�rst: ∫ √3

0

∫ 3

x2
f(x, y) dydx.

And for an example that shows how changing the order can simplify things, consider this
integral over the �rst quadrant of the unit disk∫∫

Q2∩D2

√
xy dxdy.

In one order, this is ∫ 1

0

∫ √1−y2

0

√
xy dxdy =

2

3

∫ 1

0

(1− y2)
3
2y dy,

which requires a substitution like u = 1− y2 to integrate. But in the other order, it becomes∫ 1

0

∫ √1−x2
0

√
xy dydx =

∫ 1

0

√
x
y2

2

∣∣∣∣y=
√
1−x2

y=0

dx =
1

2

∫ 1

0

√
x(1− x2) dx =

1

2

∫ 1

0

x
1
2 − x

5
2 dx,

which is easy. Of course, in more variables, there are more ways to change the order of
integration, so there's an �art� to doing this.
Here's a useful trick for computing multiple integrals over a rectangular domain [a, b]×[c, d]

of functions f(x, y) = g(x)h(y) which are products of functions of a single variable:∫ b

a

∫ d

c

f(x, y) dy dx =

(∫ b

a

g(x) dx

)(∫ d

c

h(y) dy

)
.

In other words, the multiple integral becomes a product of single integrals. This generalizes to
any number of variables, and also works for more general product domains R = P1×· · ·×Pk
in many variables.

7. Volume, Average, and Center of Mass. We are interested in measuring the volume
vol(R) =

∫∫∫
R

1 dxdydz of a region R ⊂ R3, computing related quantities like the average

f̄ :=
1

vol(R)

∫∫∫
R

f(x, y, z) dx dydz

of a function f : R→ R, especially the coordinate funtions whose averages combine into the
center of mass (x̄, ȳ, z̄) of R. (We should really call it the center of volume, but since nobody
does, neither will we!)
Note that a constant function f has average f̄ = f , and more generally, if a ≤ f ≤ b then

a ≤ f̄ ≤ b. This implies that if our region is contained in a box R ⊂ [a1, b1]× [a2, b2]× [a3, b3],
then its center of mass is also inside the box

a1 ≤ x̄ ≤ b1, a2 ≤ ȳ ≤ b2, a3 ≤ z̄ ≤ b3,
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which is a useful estimate to know if you are actually computing these.
How might we compute these integrals? If R is simple in the z direction, meaning it

can be described as the region be between the lower graph {z = g(x, y)} and upper graph
{z = h(x, y)} of functions over a domain P ⊂ R2, then we can integrate �rst in the z
direction to get

vol(R) =

∫∫
P

∫ h(x,y)

g(x,y)

1 dzdxdy =

∫∫
P

z

∣∣∣∣h(x,y)
g(x,y)

dxdy =

∫∫
P

h(x, y)− g(x, y) dxdy.

(This expresses the geometrically obvious fact that if we slice a �potato� R into very skinny
vertical �fries� of height approximately h(x, y) − g(x, y) at the point (x, y) ∈ P , then the
total volume of the potato is the sum of the volumes of the fries, which becomes the integral
of h(x, y)− g(x, y) over the horizontal slice P in the limit of in�nitely skinny fries!)
In many examples, we take g(x, y) = 0 and the region R is simply between a domain

P = graph(0) in the (x, y)-plane R2 and graph(h) = {z = h(x, y)}, which we will assume for
the rest of the discussion. To compute the integral of a function f over R which does not
depend in z, we can again perform the z integral �rst, and observe that∫∫∫

R

f dzdxdy =

∫∫
P

f(x, y)h(x, y) dxdy.

In other words, the triple-integral of z-independent f over R becomes a double-integral
weighted by the height h of the vertical slices. For example, if we take the special case
f = x, which arises when computing the center of mass, then∫∫∫

R

dzdxdy =

∫∫
P

xh(x, y) dxdy.

On the other hand, if the function f depends on z, then we need to return to the triple
integral, and see what performing the z integration �rst does to f . For example, in the
special case f = z, which also arises when computing the center of mass, we need to integrate
the squared height over the horizontal slice P :∫∫∫

R

z dzdxdy =

∫∫
P

∫ h(x,y)

0

dzdxdy =

∫∫
P

z2

2

∣∣∣∣h(x,y)
0

dxdy =
1

2

∫∫
P

h2(x, y) dxdy.

Both of these observations will be useful in the following problems.

8. Problem Set II. In the problems below, we continue using the familiar functions

h(x, y) := xy, e(x, y) := (sin x)(sin y), and p(x, y) := x5 − y4,
and the familiar subdomains of the (x, y)-plane R2:

• the unit square Q2 := [0, 1]× [0, 1] = {(x, y) | 0 ≤ x, y ≤ 1},
• the unit disk D2 := {(x, y) | x2 + y2 ≤ 1}, and
• the �rst quadrant of the unit disk Q2 ∩D2 = {(x, y) | 0 ≤ x, y, x2 + y2 ≤ 1}.

We will explore the 3-dimensional regions R between their graphs in R3 and various subdo-
mains P of R2 which we view as the plane {z = 0} ⊂ R3.

For each problem:
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• Express the volume of R as an integral over P , and evaluate it as an iterated integral.
[Hint: for some problems we may need to �gure out P , or make substitutions, or use
polar coordinates...!]
• Find the center of mass (x̄, ȳ, z̄) for the region R, where f̄ means the average of
the function f over the region R. [Hint: symmetry helps check x̄ or ȳ without
computation of integrals; z̄ is trickier to compute: reduce it to (a multiple of) the
integral over P of the square of the function whose graph de�nes R!]

Problem 8.1. Let R ⊂ R3 be the region between P = Q2 = [0, 1]× [0, 1] ⊂ R2 and graph(h).

[Hint: both h and P = Q2 are symmetric with respect to the line {x = y}!]

Problem 8.2. Let R ⊂ R3 be the region between P = Q2 ∩D2 and graph(h).

[Hint: consider polar coordinates as well as symmetry with respect to {x = y}!]

Problem 8.3. Let R ⊂ R3 be the region between P = πQ2 = [0, π] × [0, π] ⊂ R2 (the unit
square rescaled by π) and graph(e).

[Hint: symmetry with respect to {x = y} as well as {x = π
2
} and {y = π

2
}; the integral∫

sin2 t dt over a half-period is easy to compute!]

Problem 8.4. Let R ⊂ R3 be the region between graph(p) and P = {(x, y)| p(x, y) ≥ 0}∩Q2,
the subdomain of the unit square where p is non-negative.

[Hint: �rst �nd the curved part of the boundary of P where p(x, y) = 0; this gives limits
of integration depending on the order one does the iterated integral; one order is much easier
than the other, but Fubini's Theorem certi�es they are equal!]
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