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Definition 1:  Given a linear transformation  T : Rn →  Rn  a non-zero vector  v  in  Rn  is called an 
 
                        eigenvector of  T  if  Tv  =  λv  for some real number  λ .  The number  λ   is called 
 
                        the eigenvalue of  T  corresponding to  v.  Given an  n × n matrix  A  we know that  
 
                        there is a linear transformation  T = TA : Rn →  Rn  defined by  T(v)  =  Av  for every  
 
                         vector  v  in  Rn.  Consequently, eigenvectors and eigenvalues of the matrix  A  are  
 
                         precisely those of the linear transformation  T = TA. 
                          
 
     We have already seen that the main problem of linear algebra is solving systems of linear equations. 
 
The second most important problem in linear algebra is finding the eigenvectors and eigenvalues of  a 
 
linear transformation  T : Rn →  Rn  or equivalently of  an  n × n matrix  A.  As mentioned in lecture, the 
 
technique for doing this comes from consideration of determinants and kernels and we spell out the details 
 
below.   We find it particularly convenient to work with the matrix  A  whose columns are the vectors 
 
aj = T(ej)  for  j = 1, 2, 3, … , n.  The equation  Av  =  λv  has a non-zero solution  v  ⇔   the equation 
 
Av  =  (λI)v  has a non-zero solution  v  ⇔   the equation Av  −   (λI)v = 0 has a non-zero solution  v  ⇔    
 
the equation  [A − (λI)]v  has a non-zero solution  v  ⇔   v  is a non-zero vector in  Kernel([A − (λI)]). 
 
In order for  Kernel([A −  (λI)])  to have non-zero vectors, the matrix  [A − (λI)]  must be singular  
 
(i.e not invertible)  and we know from our work on determinants that this happens if and only if the 
 
det[A −  (λI)]  =  0.    
 
Definition 2  Given an  n × n matrix  A  and a variable  t  the determinant of the matrix  [A − (tI)]  is 
 
                      is a polynomial of degree exactly  n  in the variable  t .  This polynomial is called the  
 
                      characteristic  polynomial of the matrix  A  and is denoted   χA(t).   
 
      
     The roots (i.e. zeros) of this polynomial are the characteristic values (an older and now obsolete  
 
term for eigenvalues) of  A. 
 



     Since we can compute  χA(t)  by our previous work on determinants, the problem of finding the  
 
eigenvalues of  A  becomes the problem of finding the roots of a polynomial, namely χA(t)  of degree  n. 
 
In order to get a better understanding of this situation we consider the special case  n = 2, i.e. finding 
 
                                                                                                 a   c                                   a−t    c                     
the eigenvalues and eigenvectors for a 2 × 2  matrix  A  =  [        ].   Since  A −  tI  =  [              ]   it  
                                                                                                 b   d                                    b   d−t 
 
follows that   χA(t) = det[A − (tI)]  =  (a−t)(d−t) −  bc  =  ad −  (a+d)t + t2 −  bc  =  t2 − (a+d)t + (ad − bc). 
 
Now (a+d),  the negative of the coefficient of  t,  is the sum of the diagonal entries of  A  which is called 
 
trace(A),  while  (ad − bc)  is the determinant of the  2 × 2  matrix  A.  In particular, for 2 × 2  matrices  
 
finding the  eigenvalues is equivalent to finding the roots of  χA(t) = det[A −  (tI)] = t2 − (a+d) + (ad −  bc)  
 
=  t2 − trace(A)  + det(A)  a polynomial of degree  2.  Before looking at examples we mention the following  
 
theorem about the characteristic polynomial which we prove only in the  2 × 2 case: 
 
 
Theorem 1  (Cayley-Hamilton Theorem).    χA(A) = 0.   
 
 
     Before giving the proof (only in the  2 × 2 case)  we take a moment to explain what the above is saying: 
 
First compute  χA(t)  which we have already observed is a polynomial of degree  n  in the variable  t,  and  
 
then replace every occurrence of  t  by the matrix  A,  in particular replacie all powers  tk  with the  
 
matrix powers  Ak.  The Cayley-Hamilton theorem says the  n × n  matrix   χA(A)  obtained by such  
 
substitutions must be the zero matrix.   The proof in the  2 × 2 case is a simple computation where you 
 
                           (a2 + bc)  (a + d)c                                  a   c                                    1   0 
compute  A2  =  [                              ],  subtract  (a + d) [        ]  and add  (ad − bc) [      ]  and see the 
                           (a + d)b  (bc + d2)                                 b   d                                   0   1 
 
result of these computations is the  2 × 2  zero matrix.  The proof in the n × n case is much more  
 
complicated as purely computational proofs such as the one above are not practical for  n > 3. 
 
Next we have some examples of computing eigenvalues and eigenvectors for  2 × 2 matrices: 
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Example 1.  Suppose  A  =  [          ]  so  trace(A) = 6 + 0 = 6  and  det(A) = 0 − (−1)(8) = 8  so  χA(t) =  
                                                −1   0 
 
t2 −  6t + 8  =  (t − 2)(t −  4),  so it follows the eigenvalues are  λ1 = 2  and  λ2 = 4.   Next we compute the 
 
 corresponding eigenvectors:   For   λ1 = 2  this means we must solve the system of linear equations: 
     
   (6−2)    8       x      0           4x   +   8y  =  0           x  =  −2y        −2                                                        −2 
[                    ]      =       ⇒                                so                       =       y,   so non-zero multiples of  v1  = 
   −1    (0−2)    y       0         −1x  + −2y  =  0           y  =      y          1                                                           1 
 
are all the eigenvectors for  λ1 = 2.    For  λ2 = 4,  the system of linear equations we must solve is: 
 
   (6−4)   8        x      0           2x   +   8y  =  0           x  =  −4y        −4                                                        −4 
[                    ]      =       ⇒                                so                       =       y,   so non-zero multiples of  v1  = 
   −1    (0−4)    y       0         −1x  + −4y  =  0           y  =      y          1  
                                                          1 
are all the eigenvectors for  λ2 = 4.  In particular there are two linearly independent eigenvectors for  A. 
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Example 2.  Suppose  B  =  [          ]  so  trace(B) = 6 + 0 = 6  and  det(B) = 0 − (−1)(9) = 9  so  χB(t) =  
                                               −1   0 
t2 −  6t + 9  =  (t − 3)(t −  3),  so it follows the eigenvalues are  λ1 = 3  and  λ2 = 3.   Next we compute the 
 
 corresponding eigenvectors:   For   λ1 = 3  this means we must solve the system of linear equations: 
     
   (6−3)   9        x      0           3x   +   9y  =  0           x  =  −3y        −3                                                 −3 
[                    ]      =       ⇒                                so                       =       y,   so non-zero multiples of   
   −1    (0−3)    y       0         −1x  + −3y  =  0           y  =      y          1                                                    1 
 
are all the eigenvectors for  λ1 = 3.    Since the second eigenvalue  λ2 = 3  is the same as the first we do  
 
not get any more eigenvalues from  λ2.   In particular, even though we are working in R2  we do not find  
 
two linearly independent eigenvalues for the matrix  B.  
 
     The following is a more extreme example where there are no real number eigenvlaues nor eigenvectors: 
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Example 3.  Suppose  C  =  [          ]  so  trace(C) = 6 + 0 = 6  and  det(C) = 0 − (−1)(10) = 10  so  
                                              −1    0 
χC(t) =  t2 −  6t + 10  =  (t − 3)2 + 1,  so it follows the eigenvalues are complex conjuagates   λ1 = 3 + i    
 
and  λ2 = 3 −  i.   Since these are complex numbers, this matrix has no real eigenvalues and thus no real  
 
eigenvectors.  It does have complex eigenvectors, but that is a story for another course in linear algebra 
 
for which complex numbers are a prerequisite unlike our course here. 
 



     These three examples illustrate all the possibilities for the eigenvalues and eigenvectors for  2 × 2 
 
matrices as the roots of a polynomial of degree 2  can only be of one of three types:   
 
1)  Two distinct real roots, as in example 1 above. 2)   One (repeated) real root, as in example 2 above. 
 
3)  Two complex conjugate complex roots,  as in example 3 above. 
 
     Next we consider the problem of recovering (i.e. reconstructing/computing)  the standard basis matrix  
 
A  of a linear transformation  T : Rn →  Rn  from a basis of  Rn  consisting of  eigenvectors of  T  and  
 
their corresponding eigenvalues.  Although I am not claiming that it is obvious that such a reconstruction  
 
is possible, I will first try to persuade you that such a reconstruction is plausible in the case  n = 2, then  
 
we work out a specific example and finally I will generalize this to give a procedure for actually  
 
reconstructing  the matrix  A  whatever the value of  n. 
 
     Suppose  T : R2 → R2  is a linear transformation and that  s1  and  s2  are two linearly independent  
 
eigenvectors of  T  with respective eigenvalues  λ1  and  λ2  and we want to use these eigenvectors and 
                                                                   a   c 
eigenvalues to compute the matrix  A  =  [       ]  of  T  with respect to the standard basis of  R2. 
                                                                   b   d 
 
What we know is  As1 = λ1s1  and  As2 = λ2s2  where the entries  a, b, c,  and  d  of  A  are unknowns  
 
while the vectors  s1 and  s2  and the scalars  λ1 and  λ2  are all given.  The first equation is a linear system  
 
of  two equations in four unknowns while the second equation is also a linear system of two equations in  
 
four unknowns so we have a total of four linear equations in four unknowns so it is plausible that we can  
 
solve these four equations in four unknowns in order to recover the matrix  A.  Next we do an example:  
 
 
Example 4.  We try example 1 above where we computed the eigenvalues and eigenvectors from the  
 
matrix  A  to see if we can recover (i.e. reconstruct)  A  from the eigenvectors and corresponding eigen- 
 
                                     −2                                    −4 
values.  We found  s1 =      with  λ1 = 2  and  s2 =     with  λ2 = 4.  This gives the pairs of equations 
                                       1                                       1 
 
−2a + c = −4           −4a + c = −16 
                         and                            where the two equations on the left are  As1 = λ1s1  while the two 
−2b + d =   2           −4b + d =    4  
 
 



 
equations on the right are  As2 = λ2s2.  Subtracting the top equation on the right from the top equation on 
 
the left  gives  2a = 12  so  a = 6  and thus  c = 8  while subtracting the bottom equation on the right from  
 
the bottom equation on the left gives  2b = −2 so  b = −1  and thus  d = 0,  so we have recovered  A.    
  
     Next we generalize this example to arbitrary  n.   To this end suppose  T : Rn → Rn  is a linear  
 
transformation and that  s1,  s2,  s3, … , sn  is a set of  n  linearly independent eigenvectors of  T  with  
 
corresponding eigenvalues  λ1,  λ2,  λ3, … , λn.  As before,  A  is the  n × n  matrix of  T  with respect to  
 
the standard basis of  Rn,  so each of the vector equations  Asj  = λ j sj   j = 1, 2, 3, … , n  provides us with   
 
a system of  n  equations in  n2  unknowns (namely the coefficients of the unknown matrix  A).  It turns  
 
out to be convenient to organize these vector equations into a matrix equation as follows:   
 
Let  S  be the  n × n  matrix whose columns are the eigenvectors  s1,  s2,  s3, … , sn  so that the above  
 
systems of vector equations can be combined into one matrix equation:  A S  =  [ λ1s1,  λ2s2,  … , λnsn ],   
 
where  λ jsj  is the column vector obtained by multiplying the eigenvector  sj  by the eigenvalue  λ j.  It is   
 
easy to see (for example calculation in the 2 × 2 case) that the matrix  [ λ1s1,  λ2s2,  … , λnsn ]  can be  
 
written as  S Λ  where  Λ is a diagonal matrix whose diagonal entries are the corresponding eigenvalues    
 
λ1,  λ2,  λ3, … , λn  (appearing in the same order as the eigenvectors  s1,  s2,  s3, … , sn  appear in  S).    
 
The advantage of writing the system of   n2  equations in n2  unknowns as  A S  =  S Λ  becomes obvious  
 
if we recall that any matrix (in particular  S) with linearly independent columns has an inverse so  
 
multiplying this equation  (on the right)  by  S-1  gives  A S S-1 = A = S Λ S-1  giving us an explicit  
 
formula for  A  in terms of the eigenvectors of  T (which are the columns of  S)  and the corresponding  
 
eigenvalues (which are the diagonal entries of the matrix  Λ).  Thus we can recover the matrix  A  of  T   
 
whenever we are given a basis of   Rn  consisting of  n linearly independent eigenvectors of  T  together  
 
with the corresponding eigenvalues. 
 
     If we rearrange the equation  A = S Λ S-1  as  S-1A S = Λ,  we see that this means that whenever there  
 
is a basis of   Rn  consisting of eigenvectors of  A, then  A  is similar to a diagonal matrix (specifically Λ)   
 
with the matrix  S  of  eigenvectors of  A  providing the similarity.    
 



 
Remark:  Similarity of matrices [see p. 145 of the textbook]  is much stronger than the similarity of  
 
triangles you learned in geometry, where  two triangles are similar if they have the same shape even if  
 
they have different sizes.  Similarity of matrices is much more like congruence of triangles where they  
 
must have the same shape and the same size, as similar matrices can be thought of as matrices of the same  
 
linear transformation with respect to different bases of  Rn  as is carefully explained on pages 143-146 of  
 
the textbook.  In particular we have proved the following result: 
 
Theorem 2  Diagonalization Theorem  Suppose  T : Rn → Rn  is a linear transformation for which   
 
s1,  s2,  s3, … , sn  is a set of  n  linearly independent eigenvectors for  T  with corresponding eigenvalues   
 
λ1,  λ2,  λ3, … , λn.  If we let  S  be the  n × n  matrix whose columns are the above eigenvectors and let   
 
Λ  be the diagonal matrix whose diagonal entries are the corresponding eigenvalues, then the matrix  A   
 
of  T  with respect to the standard basis of  Rn  is given by  A  =  S Λ S-1  where S-1 is the inverse of  S.   
 
Furthermore, any square matrix  A  is diagonalizable (i.e.similar to a diagonal matrix) if and only if there  
 
is a basis of  Rn  consisting of eigenvectors of  A. 
 
 
     For diagonalizable matrices it is easy to compute integer powers as well as more complicated functions 
 
(as we will see later) and we describe this now.  In general, given a square matrix  A  it is difficult  to  
 
compute powers  Ak  of  A,  (not conceptually, but simply because it involves a lot of calculation).  For 
 
example to compute  Ak  requires us to perform  k  matrix multiplications so if  k  is large this is a lot of 
 
computation.  The number of computations can be reduced drastically if we observe that  Ak  =  (S Λ S-1)k 
 
= S Λk S-1  so the required computations are first computie the kth powers of the diagonal entries of  Λ,   
 
and then only two matrix multiplications, one on the left by  S  and one on the right by  S-1  (although to  
 
be completely honest we also have to compute  S-1  which is about as much work as a matrix multiplication)  
 
so computing   Ak  is no more expensive than doing three matrix multiplications (no matter how large the  
 
exponent  k).  For large values of  k  this is a huge savings and also we have an explicit formula for Ak   
 
which is useful in theoretical work as well as computations.   
 
 



     We just explained how we can practically compute large powers of any matrix that can be diagonalized  
 
so next we look at cases where  A  cannot be diagonalized.  Although we will explain (in principle) how  
 
to do this in general later, we now concentrate on cases where our matrices are 2 × 2  as in such cases we  
 
give  explicit formulas/procedures (like that above for diagonalizable matrices) for doing such calculations  
 
and along the way we will have useful comments on performing such calculations for  n × n matrices that  
 
cannot be diagonalized.    
 
     Matrices cannot be diagonalized if there are at most  k  linearly independent eigenvectors where  k < n. 
 
In the 2 × 2  case we saw in examples 2 and 3 that this can happen for only two reasons:  In example 2   
 
we had a repeated real eigenvalue and there was only one eigenvector (up to scalar multiples).  In example 3 
 
we  had no real number eigenvalues and therefore no real number eigenvectors.  A more precise statement  
 
of what happened in example 3 is that the eigenvalues and thus the eigenvectors were complex conjugates  
 
so there are no real number eigenvalues and no real number eigenvectors.  Although the formula  A  =   
 
S Λ S−

1  above still works if we allow the eigenvalues and eigenvectors to be complex (and therefore  
 
provides us with a procedure for computing powers of  A)  it seems somehow inappropriate to have to  
 
use complex numbers, complex eigenvectors and complex matrices to perform computations of powers  
 
of real number matrices.  Rather surprisingly, there is a procedure for practically computing powers (and  
 
even more complicated functions) of  2 × 2  real matrices whose eigenvalues happen to be complex  
 
conjugates and this procedure does not require any knowledge of complex numbers.  The heart of this  
 
procedure is to “separate” such matrices into their “real”  and “imaginary” parts with both parts being  
 
real number matrices and we illustrate this procedure with the following example which is very much  
 
like example 3 above but a  little bit more complicated: 
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Example 5.  Suppose  C  =  [         ]  so  trace(C) = 6 + 0 = 6  and  det(C) = 0 − (−1)(13) = 13  so  
                                              −1    0 
 
χC(t) =  t2 −  6t + 10  =  (t − 3)2 + 4,  and it follows the eigenvalues are complex conjuagates   λ1 = 3 + 2i    
 
                                                                                                                                       3     13 
and  λ2 = 3 −  2i.   If we subtract  3I  from the matrix  C,  we obtain the matrix  K = [           ]  whose  
                                                                                                                                       −1  −3 
 
eigenvalues are  2i  and  −2i,  so the matrix  J  = (1/2)K  has eigenvalues  i  and  − i.  If we compute  J2 
 
           3   13             3    13                 (9−13)  (39−39)         −1   0 
(1/2)[           ]  (1/2)[           ]  =  (1/4)[                            ]  =  [         ]  =  −I,  we see that the matrix  J  is  
         −1  −3             −1  −3                 (−3+3)  (−13+9)          0 −1 
 
like a real number matrix version of the complex number  i.  In particular, the original matrix   
 
C  =  3I + 2J  has been “separated” into its “real” part  3I  and its “imaginary” part  2J.   
 
 
     To compute powers of  C  we simply compute powers of  [3I + 2J]  using the binomial theorem in  
 
conjunction with the fact that all powers of  I  are equal to  I  while the powers of  J  are:  J2 = −I,  
 
J3 = −J,  and  J4 = I  with all higher powers of J  computed from repetitions of this sequence of powers  
 
of  J.   For example,  C2  = [3I + 2J]2  =  (3I)2 + 2(3I)(2J) + (2J)2 =  9I + 12J + 4(−I) = 5I + 12J  and a  
 
similar calculation gives  C3 = −9I + 46J.  In particular, we can compute large powers of  C  without  
 
having to do any matrix multiplications at all as all bookkeeping is done using the binomial theorem in  
 
conjunction with our above formulas for the powers of  the matrix  J.   
 
     This approach can also be used to compute more complicated functions of the matrix  C.  For instance,   
 
if we let  t  be a variable then the matrix  eCt  can be computed as  e[3I + 2J]t  = e3It + 2Jt = e3It e2Jt = (e3t)I e2Jt  
 
= (e3t)e2Jt,  where e3t  is the ordinary real function of  t  and the matrix  e2Jt can be computed using the  
 
power series expansion of  ex  =  1 + x + x2/2! + x3/3! + … + xk/k! + …  We replace the variable  x  by the  
 
matrix  (2t)J  and make use of the formulas for the powers of  J  to see that  e2Jt  =  cos(2t)I + sin(2t)J   
 
which you can think of as a real number matrix version of Euler’s formula  eix  =  cos(x) + isin(x)  with   
 
x = 2t  and  the complex number  i  replaced by the real matrix  J.   Thus  eCt  = (e3t) [cos(2t)I + sin(2t)J].   
 
 
 



The details of this computation are as follows:    
 
e2Jt  =  I + (2tJ) + (2tJ)2/2!  + (2tJ)3/3!  + … + (2tJ)k/k!  + … 
 
        =  I + (2t)J + [(2t)2/2!]J2 + [(2t)3/3!]J3 + … + [(2t)k/k!]Jk + …   separate into even and odd powers 
 
        =  I  +  [(2t)2/2!]J2 + [(2t)4/4!]J4 + … +  [(2t)2m/(2m)!]J2m + …   use  J2 = −I  and  J4 = I  here 
 
            + (2t)J + [(2t)3/3!]J3 + … + [(2t)2m+1/(2m+1)!]J2m+1 + …         use   J3 = −J  here  to find          
 
 =   I −  [(2t)2/2!] I + [(2t)4/4!] I − [(2t)6/6!] I + … + (−1)k [(2t)2k/(2k)!] I + …           factor out  I  
 
              (2t)J −  [(2t)3/3!]J +  [(2t)5/5!]J −  … + (−1)k[(2t)2k+1/(2k+1)!]J  + …            factor out  J 
 
         =  (1 − [(2t)2/2!] + [(2t)4/4!] − [(2t)6/6!] + … + (−1)k [(2t)2k/(2k)!] + … ) I      series for  cos(2t) I 
 
             ((2t) −  [(2t)3/3!] +  [(2t)5/5!] − … + (−1)k[(2t)2k+1/(2k+1)!]  + …) J              series for  sin(2t) J 
 
         =  cos(2t)I + sin(2t)J  as claimed. 
 
This example generalizes to any  2 × 2  matrix  A  whose eigenvalues are complex conjugates  a + bi  and   
 
a −  bi  as we write  A  in the form A =  aI + bJ  where  J = [A −aI]/b  is a real number matrix such that   
 
J2 = −I  and the above argument shows that  eAt  = (eat) [cos(bt)I + sin(bt)J]  where  J = [A −aI]/b.  
 
     We will return to matrices of the form  eAt  later when we discuss one of the main applications of  
 
eigenvalues and eigenvectors, namely the solution of systems of first order linear differential equations  
 
with constant coefficients.   
  
     Next we look at cases that are generalizations of Example 2 and for this we need to introduce: 
 
 
Definition 3.  A linear transformation T : Rn →  Rn  is  nilpotent  if some positive integer power of  T 
 
                        is the zero transformation  0  (i.e. the transformation that sends every vector in  Rn  to the  
 
                        zero vector).  The smallest positive exponent  k  such that  Tk = 0 is called the index of  
 
                        nilpotence of  T.  The same terminology is used if the linear transformation  T  is replaced  
 
                        by an n × n matrix  A.  
 
                                                                                                                             (6−3)    9            3     9 
     For example, if  B  is the matrix in example  3 above, then  N = B −  3I  =  [                 ]  =  [           ] 
                                                                                                                               −1  (0−3)        −1  −3 
 
is nilpotent with index of nilpotence 2  because  N2 = 0.  If we write  B  =  3I + N  then we have  
  



separated  B  into its “real” part  3I  and its “nilpotent” part  N  =  B  −  3I  and much the same ideas  
 
that were used above for matrices with complex conjugate eigenvalues can be used to compute powers  
 
of  B.  Specifically,  Bk  = [3I + N]k  =  [3I]k + k[3I]k-1N  + …  where all remaining terms from the  
 
binomial theorem involve  Nk  for  k ≥ 2  and since  N2 = 0  all such terms are  0,  so  Bk = 3k-1[3I + kN]. 
 
The computation of   eBt  is also easy in this case:  eBt = e[3I+N]t =  e3IteNt  and if we compute  eNt  using  
 
the power series for the exponential function  eNt  =  I + (Nt) + (Nt)2/2! + …  all the terms after the first  
 
two in the power series are  0  because  N2 = 0,  so  eNt  = I + Nt  therefore  eBt =  e3t[I + Nt]. 
 
All of this generalizes to any  2 × 2  matrix  B  having a repeated eigenvalue  λ  and only one eigenvector 
 
(up to scalar multiples)  as  Bk = (λ)k-1[λI + kN]  where  N = B −  λI  is the “nilpotent” part of  B  and  
 
similarly  eBt =  exp(λt) [I + Nt]. 
 
     Before making some comments about  n × n  matrices that cannot be diagonalized we summarize  
 
our results from all the 2 × 2  cases: 
 
 
Case 1  A  has two linearly independent eigenvectors  s1  and  s2  with corresponding eigenvalues 
 
λ1 and  λ2.  Remark:  It is possible that  λ1 = λ2 = λ ,  but if so then  A = λI  is a scalar multiple of  I. 
 
Let  S  be the matrix whose columns are the eigenvectors  s1  and  s2  and let  Λ  be the diagonal matrix 
 
whose diagonal entries are the corresponding eigenvalues  λ1  and  λ2.  Then  Ak = S Λk S-1  where  Λk 
 
is the diagonal matrix whose diagonal entries are the k-th powers of the diagonal entries of  Λ  and S-1 
 
is the inverse of  S.  Furthermore,  eAt = S eΛ

t S-1  where eΛ
t  is the diagonal matrix whose diagonal entries 

 
are the exponential functions  exp(λ1t)  and exp(λ2t).   
 
 
Case 2  A  has repeated eigenvalues  λ and  λ   and only one eigenvector (up to scalar multiples).   
 
We split  A  into its “real” and “nilpotent” parts   A = λI  +  N,  where  N = A − λI.    
 
Then  Ak = (λ)k-1[λI + kN].  Furthermore,  eAt =  exp(λt) [I + Nt]. 
 
 
 
 
 



Case 3  A  has a pair of complex conjugate eigenvalues  a + bi  and  a −  bi.  We split  A  into its “real” 
 
and “imaginary” parts  A  =  aI + bJ,  where  J = [A −  aI]/b  is a matrix such that  J2 = −I.  Then  Ak  = 
 
[aI + bJ]k  is computed using the binomial formula and we do not have to compute any matrix products 
 
or powers because  Ij = I  for every exponent  j  while the powers of  J  are computed using  J2 = −I  so 
 
J3 = −J  and J4 = I, etc.   Furthermore,   eAt  = (eat) [cos(bt)I + sin(bt)J]. 
 
 
     The case of  n × n  matrices that cannot be diagonalized is considerably more complicated as there  
 
can be several eigenvalues that are repeated and others that come in complex conjugate pairs in the  
 
same problem so I limit the discussion here to the cases where the matrix  A  has only one eigenvalue  λ   
 
that is repeated  n times as this is a very important special case that needs to be looked at if you want 
 
to look at arbitrary matrices that cannot be diagonalized.  As before we separate  A  into its “real”  part 
 
λI  and its “nilpotent” part  N = A − λI.  In the case  n = 2  the index of nilpotence for any non-zero  
 
matrix must be  2,  but in the  n × n  case this index is only guaranteed to be at most  n.  If the index is 
 
n  then there will be only one eigenvector (up to scalar multiples)  but if the index is smaller there   
 
will be several independent eigenvectors and as many as (n-1) of them if the index is only 2.  The details 
 
are quite messy and we will not go into them here.  In the extreme case where the index of nilpotence  
 
is  n,  in order to compute powers of   A = λI + N  we must first compute all the non-zero powers of  N   
 
i.e. up to  Nn-1  because all these powers will be non-zero and will appear in the expansion of   [λI + N]k   
 
by the  binomial theorem.  Similarly, if you want to compute  eNt =  I + (Nt)/1! + (Nt)2/2! + … +  (Nt)k/k! +  … 
 
then the first  n terms (through  k = n-1)  will be non-zero.  For example if  n = 4, then   
 
eNt =  I + Nt + N2t2/2! + N3t3/3!   rather than the much simpler formula  eNt =  I + Nt  when  n = 2. 
 
 
  
 
 
 
 
 
 


