1. Consider the matrix
\[A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ 1 & 1 & 3 \\ -2 & 1 & -3 \end{pmatrix}. \]

Let \(b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} \). Find equations in \(b_1, b_2, b_3, b_4 \) so that the equation \(Ax = b \) can be solved. Find a basis of the image of \(A \).

2. True or false? Justify.

- If \(W \) is a subspace of an \(n \)-dimensional vector space \(V \) and \(\dim(W) = n \), the \(W = V \).
- There exists a linear transformation \(T : \mathbb{R}^5 \to \mathbb{R}^3 \) whose kernel has dimension 1.
- Let \(\mathbb{R}^{2 \times 2} \) be the vector space of \(2 \times 2 \)-matrices. The function \(\det : \mathbb{R}^{2 \times 2} \to \mathbb{R} \), which maps a matrix \(A \) to its determinant \(\det(A) \), is linear.
- Let \(P \) be the vector space of polynomials in \(x \), and let
\[W = \left\{ p(x) : xp(x) - 2 \int_0^1 p(t)t \, dt = 0 \right\}. \]

Then \(W \) is a subspace of \(P \).

3. Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) with \(T \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \begin{pmatrix} \sqrt{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \) and \(T \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} -\sqrt{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \).

- (a) Calculate \(T \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \).
- (b) Find the matrix \(A \) which corresponds to the transformation \(T \circ T \).
- (c) For which \(k \) is \(T^k \) the identity transformation? Justify.

4. Let \(V \) be the vector space spanned by the functions \(e^x, xe^x, \) and \(x^2 e^x \), so that \(V \) has a basis \(\mathcal{B} = (e^x, xe^x, x^2 e^x) \).

- What is the dimension of \(V \)?
- Let \(T : V \to V \) be the linear transformation \(T(f(x)) = f'(x) \). Find the matrix of \(T \) with respect to the basis \(\mathcal{B} \). Is \(T \) invertible?
5. Let \(V \) be the vector space of all upper triangular \(2 \times 2 \) matrices. Define the linear transformation \(T : V \rightarrow V \) as
\[
T \left(\begin{array}{cc}
a & b \\
0 & c \\
\end{array} \right) = aI_2 + bP + cP^2,
\]
where \(P = \left(\begin{array}{cc}
1 & 2 \\
0 & 3 \\
\end{array} \right) \).

- Find the matrix of \(T \) with respect to the basis \(\mathfrak{B} = \left\{ \left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
\end{array} \right), \left(\begin{array}{cc}
0 & 1 \\
0 & 0 \\
\end{array} \right), \left(\begin{array}{cc}
0 & 0 \\
0 & 1 \\
\end{array} \right) \right\} \).
- Find bases of the image and kernel of \(T \).

6. Compute the determinant of the following matrix:
\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 3 & 3 \\
2 & 2 & 5
\end{pmatrix}
\]

7. Let \(A = \left(\begin{array}{cc}
0.4 & 0.6 \\
0.6 & 0.4 \\
\end{array} \right) \).

- Calculate the eigenvalues and eigenvectors of \(A \).
- Check that the eigenvectors \(\vec{v}_1, \vec{v}_2 \) that you calculated above form a basis of \(\mathbb{R}^2 \).
- Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear map whose matrix with respect to the standard basis is \(A \). Find its matrix with respect to the new basis \(\mathfrak{B} = \{ \vec{v}_1, \vec{v}_2 \} \).

8. Solve the following differential equation:
\[
2 \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} + 2y = 0
\]
What is the dimension of its space of solutions?

9. Two interacting populations of coyotes and roadrunners can be modeled by the recursive equations:
\[
\begin{pmatrix}
c(t+1) \\
r(t+1)
\end{pmatrix} = \begin{pmatrix}
0 & 0.75 \\
-1.5 & 2.25
\end{pmatrix} \begin{pmatrix}
c(t) \\
r(t)
\end{pmatrix}.
\]
Find \(c(5) \) and \(r(5) \) given the initial populations \(c(0) = 500, r(0) = 700 \). What are the limiting values of \(c(t), r(t) \)?