235 Common midterm review Questions

Paul Hacking

November 3, 2013

- (1) Let m and n be positive integers and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in \mathbb{R}^n . What does it mean to say that a vector \mathbf{v} is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_m$?
- (2) Is the vector $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$ a linear combination of the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$?
- (3) Let m and n be positive integers and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in \mathbb{R}^n . What is meant by the span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$?
- (4) In each case, give a precise geometric description of the span of the given vectors.

(a)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

(b)
$$\mathbf{v}_1 = \begin{pmatrix} 2\\4 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 3\\6 \end{pmatrix}$.

(c)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

(d)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$.

(e)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix}$.

- (5) Let m and n be positive integers and $T: \mathbb{R}^n \to \mathbb{R}^m$ be a function. What does it mean to say that T is a linear transformation? If T is a linear transformation, what is meant by the (standard) matrix A of T? How many rows and columns does A have? How are the columns of A determined by the linear transformation T?
- (6) In each case, determine whether the function T is a linear transformation, and if so compute its (standard) matrix.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y+1 \\ x \end{pmatrix}$.

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ x + y + z \end{pmatrix}$.

- (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation about the origin through angle $\pi/4$ counterclockwise.
- (d) $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by reflection in the yz-plane.
- (e) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by orthogonal projection onto the line y = x.
- (7) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. What is the *kernel* of T? What is the *image* of T? Given the matrix A of T, how can we express the kernel of T as the span of a set of vectors? What about the image?
- (8) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $\mathbf{v} \in \mathbb{R}^n$. What is the relation between the set of vectors

$$\{\mathbf{w} \in \mathbb{R}^n \mid T(\mathbf{w}) = T(\mathbf{v})\} \subset \mathbb{R}^n$$

and the kernel of T?

(9) In each case, describe the kernel and the image of the linear transformation T as the span of a set of vectors.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

- (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by orthogonal projection onto the plane $\Pi \subset \mathbb{R}^3$ with equation x + 2y + 3z = 0.
- (c) $T: \mathbb{R}^3 \to \mathbb{R}^4$ the linear transformation with standard matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 4 & 7 \end{pmatrix}.$$

- (10) Let m and n be positive integers and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ a set of vectors in \mathbb{R}^n . What does it mean to say that $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent? If they are linearly independent, what can you say about m and n?
- (11) In each case, determine whether the given set of vectors is linearly independent.

(a)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

(b)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 12 \\ 37 \end{pmatrix}$.

(c)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 13 \\ 7 \end{pmatrix}$.

(d)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix}$.

- (12) Let m and n be positive integers. What does it mean to say that a subset $W \subset \mathbb{R}^n$ is a *subspace* of \mathbb{R}^n ? (There is a list of 3 conditions which must be satisfied.)
- (13) In each case, determine whether the given subset W is a subspace.

(a)
$$W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x + y = 1 \right\} \subset \mathbb{R}^2$$

(b)
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + 2y + 3z = 0 \right\} \subset \mathbb{R}^3.$$

(c)
$$W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid y \ge 2x \right\} \subset \mathbb{R}^2$$
.

- (d) $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, and (i) $W = \ker(T) \subset \mathbb{R}^n$, (ii) $W = \operatorname{image}(T) \subset \mathbb{R}^m$.
- (e) $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are vectors in \mathbb{R}^n , and $W = \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_m) \subset \mathbb{R}^n$ is the span of the set of vectors.
- (f) $W \subset \mathbb{R}^n$ is the set of solutions of a system of homogeneous linear equations

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = 0$$
 for $i = 1, \dots, m$

(Here the coefficient a_{ij} of x_j in the *i*th equation is some given real number for each *i* and *j*, and each equation has no constant term (the equations are *homogeneous*).)

- (14) Let m and n be positive integers. Let $W \subset \mathbb{R}^n$ be a subspace. What does it mean to say that a list of vectors $\mathbf{v}_1, \dots \mathbf{v}_m$ in \mathbb{R}^n is a basis of W? What is meant by the dimension of W? Given a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$, how can we compute a basis of the kernel and the image of T?
- (15) In each case, determine a basis of the subspace W. Use your answer to determine the dimension of W.
 - (a) $W \subset \mathbb{R}^3$ is the plane with equation x + 2y + 4z = 0.
 - (b) W is the kernel of the linear transformation $T\colon \mathbb{R}^5 \to \mathbb{R}^3$ with standard matrix

$$A = \begin{pmatrix} 1 & 0 & 3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}.$$

(c) W is the image of the linear transformation $T \colon \mathbb{R}^4 \to \mathbb{R}^3$ with standard matrix

$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 2 & 2 & -1 \\ 2 & 4 & 1 & 4 \end{pmatrix}.$$

(d)
$$W = \mathbb{R}^n$$
.

- (16) Let m and n be positive integers and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ a set of vectors in \mathbb{R}^n . What can you say about m and n if the vectors (a) are linearly independent? (b) span \mathbb{R}^n ? (c) are a basis of \mathbb{R}^n ?
- (17) Let m and n be positive integers. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. What is meant by the rank of T? (Give two answers: one suitable for computational purposes in terms of the echelon form of the matrix of T, and another more conceptual in terms of the dimension of a subspace determined by T.) What is the rank nullity formula for the linear transformation T?
- (18) What can you say about the dimension of the kernel and image of T in the following cases?
 - (a) $T: \mathbb{R}^8 \to \mathbb{R}^3$.
 - (b) $T: \mathbb{R}^4 \to \mathbb{R}^7$.
 - (c) $T: \mathbb{R}^n \to \mathbb{R}^m$.
- (19) Let m and n be positive integers. Let $W \subset \mathbb{R}^n$ be a subspace of dimension m. What can you say about m and n? Let $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ be a basis of W (the number of elements in the basis equals m, the dimension of W, by the definition of dimension). For $\mathbf{v} \in W$ a vector, what is the definition of the \mathcal{B} -coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ of \mathbf{v} ?
- (20) Let $W \subset \mathbb{R}^3$ be the plane given by the equation x + y + z = 0. Let $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.
 - (a) Explain why \mathcal{B} is a basis of W.
 - (b) Compute the vector $\mathbf{w} \in W$ with \mathcal{B} -coordinate vector $[\mathbf{w}]_{\mathcal{B}} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.
 - (c) Let $\mathbf{v} = \begin{pmatrix} 3 \\ 4 \\ -7 \end{pmatrix}$. Show that the vector \mathbf{v} lies in W and compute its \mathcal{B} -coordinate vector $[\mathbf{v}]_{\mathcal{B}}$.

- (21) Let $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
 - (a) Explain why \mathcal{B} is a basis of \mathbb{R}^2 .
 - (b) Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the invertible linear transformation defined by $L(\mathbf{x}) = [\mathbf{x}]_{\mathcal{B}}$. What is the standard matrix of the inverse L^{-1} ? (Note: No computation is required!) Use your answer to compute the standard matrix of L.
- (22) Let n be a positive integer. Let \mathcal{B} be a basis of \mathbb{R}^n and $T : \mathbb{R}^n \to \mathbb{R}^n$ a linear transformation. What is the definition of the \mathcal{B} -matrix of T? How are the columns of the \mathcal{B} -matrix determined by the linear transformation T? If A is the standard matrix of T and B is the \mathcal{B} -matrix of T, how are A and B related?
- (23) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Let \mathcal{B} be the basis of \mathbb{R}^2 given by $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Determine the \mathcal{B} -matrix B of T.
- (24) For each of the following linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$, determine a basis \mathcal{B} of \mathbb{R}^n such that the \mathcal{B} -matrix of T is diagonal, and compute this matrix.
 - (a) $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection in the line y = 2x.
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by orthogonal projection onto the plane with equation 2x + y + z = 0.
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by rotation about the axis with equations x=y=z through angle π radians.
- (25) What is a linear space (or vector space)? Make sure you understand the generalizations of the basic notions of linear algebra from \mathbb{R}^n to linear spaces, including span, linear independence, basis, dimension, subspace, linear transformation, kernel, image, etc.
- (26) For each of the following linear spaces write down a basis. Use your answer to compute the dimension.
 - (a) The linear space \mathcal{P}_4 of polynomials of degree ≤ 4 .

- (b) The linear space $\mathbb{R}^{2\times 3}$ of 2×3 matrices.
- (c) \mathcal{P}_n .
- (d) $\mathbb{R}^{m \times n}$.
- (27) Which of the following subsets $W \subset V$ are subspaces of the given linear space V? If W is a subspace, find a basis.
 - (a) $V = \mathcal{P}_2$, $W = \{f(x) \mid f(1) = 0\} \subset \mathcal{P}_2$.
 - (b) $V = \mathbb{R}^{2 \times 2}$, $W = \{X \mid AX = XA\} \subset \mathbb{R}^{2 \times 2}$, where $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
 - (c) $V = \mathcal{P}_4, W = \{f(x) \mid f(-x) = -f(x)\} \subset \mathcal{P}_4.$
- (28) In each case, determine whether the given function $T: V \to W$ is a linear transformation from the linear space V to the linear space W. If T is linear determine a basis of the kernel and the image of T.
 - (a) $T: \mathcal{P}_3 \to \mathcal{P}_3$, T(f(x)) = f'(x), the derivative of f(x).
 - (b) $T: \mathcal{P}_2 \to \mathbb{R}^2$, $T(f(x)) = \begin{pmatrix} f(1) \\ f(2) \end{pmatrix}$.
 - (c) $T: \mathcal{P}_2 \to \mathcal{P}_2$, T(f(x)) = xf'(x) f(x).
- (29) Let V and W be (finite dimensional) linear spaces and $T: V \to W$ a linear transformation. We say T is invertible or an isomorphism if T has an inverse $T^{-1}: W \to V$. If T is an isomorphism then $\dim V = \dim W$ ("an invertible matrix is square"). Conversely, if $\dim V = \dim W$, how can we determine whether T is an isomorphism in terms of (a) the kernel of T and (b) the image of T?
- (30) Which of the following linear transformations are isomorphisms?
 - (a) $T: \mathcal{P}_3 \to \mathbb{R}^2$, $T(f(x)) = \begin{pmatrix} f(3) \\ f(5) \end{pmatrix}$.
 - (b) $T: \mathcal{P}_2 \to \mathcal{P}_2, T(f(x)) = f(x) f'(x).$
 - (c) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$, T(X) = AXB where $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$.

- (31) Let V be a linear space of dimension n and $\mathcal{B} = (f_1, \ldots, f_n)$ a basis of V. For $f \in V$, what is the definition of the \mathcal{B} -coordinate vector $[f]_{\mathcal{B}}$? Make sure you understand how to translate linear algebra questions about V into questions about \mathbb{R}^n using the \mathcal{B} -coordinate transformation $L \colon V \to \mathbb{R}^n$, $L(f) = [f]_{\mathcal{B}}$.
- (32) Let $V = \mathcal{P}_2$ and $\mathcal{B} = (1, (x-1), (x-1)^2)$ a basis of V. Let $f = x^2 + 2x + 3 \in V$. Compute $[f]_{\mathcal{B}}$.
- (33) Let V be a linear space of dimension n and $\mathcal{B} = (f_1, \ldots, f_n)$ a basis of V. Let $T: V \to V$ be a linear transformation from V to V. What is the definition of the \mathcal{B} -matrix of T? Explain how to compute the columns of the \mathcal{B} -matrix.
- (34) For parts (a) and (c) of Q28, write down a basis \mathcal{B} of V and compute the \mathcal{B} -matrix of T.
- (35) Let $C^{\infty}(\mathbb{R}, \mathbb{R})$ denote the linear space of functions $f : \mathbb{R} \to \mathbb{R}$ having derivatives of all orders. Let $V \subset C^{\infty}(\mathbb{R}, \mathbb{R})$ be the subspace spanned by $\cos(x)$ and $\sin(x)$.
 - (a) Explain why $\mathcal{B} = (\cos(x), \sin(x))$ is a basis of V.
 - (b) Let $T: V \to V$ be the linear transformation defined by T(f(x)) = f'(x) + f(x). Compute the \mathcal{B} -matrix of T. Is T invertible?
- (36) Let V be a linear space, \mathcal{B} a basis of V, and \mathcal{C} another basis of V. Recall that the change of basis matrix $S_{\mathcal{B}\to\mathcal{C}}$ is defined by

$$S_{\mathcal{B}\to\mathcal{C}}\cdot[\mathbf{x}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{C}}$$
 for all $\mathbf{x}\in V$.

Explain how to compute the columns of $S_{\mathcal{B}\to\mathcal{C}}$.

(37) Let $V \subset \mathbb{R}^3$ be the plane defined by the equation x + 2y + z = 0. Let $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ be the basis of V given by $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$. Let $\mathcal{C} = (\mathbf{w}_1, \mathbf{w}_2)$ be another basis of V given by $\mathbf{w}_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\mathbf{w}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

- (a) Compute the change of basis matrix $S_{\mathcal{B}\to\mathcal{C}}$.
- (b) Using part (a) or otherwise, compute $S_{\mathcal{C}\to\mathcal{B}}$.
- (38) What is the area of the image T(S) of the unit square

$$S = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid 0 \le x \le 1, \ 0 \le y \le 1 \right\} \subset \mathbb{R}^2$$

under the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with standard matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$? What is the area of the image T(D) of the unit disk

$$D = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x^2 + y^2 \le 1 \right\}$$

under the linear transformation T?

(39) Compute the determinant of each of the following matrices. Use your answer to determine whether the matrix is invertible.

(a)
$$A = \begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}$$
.

(b)
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

(c)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 3 & 5 \end{pmatrix}$$
.

(d)
$$A = \begin{pmatrix} 2 & 1 & 6 & 7 \\ 0 & 3 & 4 & 2 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
.

(e)
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 3 \\ 2 & 4 & 7 & 9 \\ 3 & 3 & 3 & 8 \end{pmatrix}$$
.

(40) Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the function defined by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \det \begin{pmatrix} 1 & 1 & x \\ 1 & 2 & y \\ 1 & 3 & z \end{pmatrix}.$$

- (a) Explain why T is a linear transformation and compute the standard matrix of T.
- (b) What is the kernel of T? Explain your answer geometrically.
- (41) Let n be a positive integer. Let A and B be $n \times n$ matrices. Suppose $\det A = 5$ and $\det B = 7$. Compute (a) $\det(AB)$, (b) $\det(A^{-1})$ (note that A is invertible (why?)), (c) $\det(SAS^{-1})$ (where S is an invertible $n \times n$ matrix).
- (42) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Suppose that there is a basis $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ of \mathbb{R}^3 such that $T(\mathbf{v}_1) = 3\mathbf{v}_1$, $T(\mathbf{v}_2) = 2\mathbf{v}_2$, and $T(\mathbf{v}_3) = 2\mathbf{v}_3 + \mathbf{v}_2$. What is the determinant of the standard matrix of T?