Linear Algebra Final Exam Practice Problems
Math 235 Fall 2009

1: Let V,W be vector spaces. Define the following terms:

1a: What is a subspace of V?

1b: Let $F : V \to W$ be a function. What does it mean to say that F is linear?

1c: Let $T = \{v_1, v_2, \ldots\}$ be a subset of V. What is a linear combination of elements of T? What is the span of T? What does it mean to say that T is linearly independent? What does it mean to say that T spans V? What does it mean to say that T is a basis of V?

1d: What is the dimension of V?

1e: Let $F : V \to W$ be linear. Define $\ker(F)$. Define $\text{im}(F)$. What is the rank of F? What is the nullity of F?

1f: Let $F : V \to V$ be linear. What is an eigenvalue of F? What is an eigenvector of F?

1g: What does it mean to say that two $n \times n$ matrices are similar?

1h: What does it mean to say that two vector spaces are isomorphic?

1i: Let A be an $n \times n$ matrix. What is an eigenbasis for the matrix A?

1k: Let B be a basis of a vector space V. What does one mean by the coordinates of a vector $v \in V$ with respect to B?

2a: Let $F : V \to W$ be linear. Show that $\ker(F)$ is a subspace of V. Show that $\text{im}(F)$ is subspace of W.

2b: State the rank+nullity theorem.

3: Consider the system of equations

$$
\begin{align*}
x - 2y + 3z - w &= 2 \\
2x + y - z + 3w &= 1 \\
5x + z + 5w &= 4.
\end{align*}
$$

3a: Find all, if any, solutions to this system.

3b: Write the system as a matrix equation.
4a: Which vectors \(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \) can be written as a linear combination of the vectors \(\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 8 \end{pmatrix} \).

4b: Which vectors \(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \) are in the image of the matrix
\[
\begin{pmatrix}
1 & 0 & 2 \\
-2 & 1 & -5 \\
3 & -2 & 8
\end{pmatrix}.
\]

5: Let \(A \) denote the matrix representing rotation by angle \(\pi/6 \) about the line through the origin and the point \(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \). Let \(B \) be the matrix representing reflection across the plane \(3x - y + z = 0 \). How do you find the matrix representing the composition, first, of the reflection and then, second, the rotation from the matrices \(A \) and \(B \)? Note that we do not ask you to find the matrices \(A \) and \(B \) or the matrix representing the composition.

6: Let \(A = \{ \begin{pmatrix} 1 \\ 2 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \} \) be a basis of \(\mathbb{R}^2 \). Let
\[
M = \begin{pmatrix}
1 & -2 \\
3 & 0
\end{pmatrix}
\]
be the matrix representing a linear transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) with respect to the basis \(E = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \} \). What is the representation this linear transformation with respect to the basis \(A \)?

7: True or False. (Explain!)

7a: The set of all vectors of the form \(\begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \) where \(a, b \) are real numbers forms a subspace.

7b: Let \(V \) be the space of all functions from \(\mathbb{R} \) to \(\mathbb{R} \) that have infinitely many derivatives. The function
\[
F : V \rightarrow V \\
F : f \mapsto 3f' - 2f''
\]
is linear.

7c: If the determinant of a \(4 \times 4 \) matrix is 4, then the rank of the matrix must be 4.
7d: If the standard vectors \(\{e_1, e_2, \ldots, e_n\} \) are eigenvectors of an \(n \times n \) matrix, then the matrix is diagonal.

7e: If 1 is the only eigenvalue of an \(n \times n \) matrix \(A \), then \(A \) must be \(I_n \).

7f: If two \(3 \times 3 \) matrices both have the eigenvalues 3, 4, 5, then \(A \) must be similar to \(B \).

8a: Let \(F \) be counterclockwise rotation of the plane by angle 45 degrees followed by a scaling of \(\frac{3}{2} \). What are all the eigenvalues of \(F \).

8b: What are all the eigenvalues and eigenvectors of orthogonal projection onto a line \(L \) in \(\mathbb{R}^3 \)?

9: Let \(A \) be a \(2 \times 2 \) matrix with eigenvalues 1.3, .6 and corresponding eigenvectors \(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \). Let \(v = \begin{pmatrix} 15 \\ 15 \end{pmatrix} \). Find \(A^n(v) \) for \(n = 61 \). Your answer will have expressions of the form \((.6)^p, (1.3)^p \). Do not simplify these.

10a: Find the eigenvalues and eigenvectors for the matrix

\[
A = \begin{pmatrix} 4 & 2 \\ 2 & 7 \end{pmatrix}.
\]

Find a matrix \(B \) so that

\[
BAB^{-1} = M
\]

is diagonal. What is the matrix \(M \).

10b: Find the eigenvalues and eigenvectors for the matrix

\[
\begin{pmatrix} 8 & 9 \\ -4 & -4 \end{pmatrix}.
\]

Is this matrix diagonalizable. If it is what is the diagonal matrix? If not diagonalisable, why not?

10c: Find the eigenvalues and eigenvectors for the matrix

\[
C = \begin{pmatrix} 0 & 2 \\ -5 & 2 \end{pmatrix}.
\]

Give a matrix of the form \(\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \) that is similar to \(C \).
11: Find the eigenvalues of the matrix A, given below. Find bases for the eigenspaces of A. Can you find an invertible matrix, S, such that $S^{-1}AS = D$, where D is a diagonal matrix? If no, why not? If yes, find the matrices S and D.

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 2 \end{pmatrix}.$$

Hint: When computing the characteristic polynomial of A, watch out for common factors: you want it factored at the end of the day.

12: Find the eigenvalues of the matrix A, given below. Find bases for the eigenspaces of A. Can you find an invertible matrix, S, such that $S^{-1}AS = D$, where D is a diagonal matrix? If no, why not? If yes, find the matrices S and D.

$$A = \begin{pmatrix} -8 & 5 & 4 \\ -9 & 5 & 5 \\ 0 & 1 & 0 \end{pmatrix}.$$

Hint: One way to solve a cubic equation is to find (guess) one root, and then perform long division, which would leave you with a quadratic polynomial. If the characteristic polynomial has a free coefficient which is an integer, as a first guess you may want to check the numbers which divide it. For example, if you have $\lambda^3 - 2\lambda^2 - \lambda + 2$, you may want to try ±1 and ±2.

13: Find the eigenvalues of the matrix A, given below. Find bases for the eigenspaces of A. Can you find an invertible matrix, S, such that $S^{-1}AS = D$, where D is a diagonal matrix? If no, why not? If yes, find the matrices S and D.

$$A = \begin{pmatrix} 3 & 2 & -2 \\ 2 & 3 & -2 \\ 6 & 6 & -5 \end{pmatrix}.$$

14: Find the determinant of the matrix

$$\begin{pmatrix} -1 & 2 & 0 \\ 2 & -2 & 5 \\ 4 & -1 & 3 \end{pmatrix}.$$