Name:

- 1. a: Solve the system of equations using row operations.
 - x + y = z = 62x y = 03x y 2z = -3
 - b: Write the above system of equations as a matrix equation.
 - c: Compute the matrix products AB and BA if possible:

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -5 & 3 \end{pmatrix}$$

and

$$B = \begin{pmatrix} -1 & -1 & 2 \\ -2 & -3 & -2 \end{pmatrix}.$$

d: For what vectors $v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ does the equation Ax = v have a solution if $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 3 \end{pmatrix}$, and $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

- 2. a: What does it mean for a basis of \mathbb{R}^3 to be orthonormal. b: Let $f_1 = (1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3}), f_2 = (1/\sqrt{2}, 1/\sqrt{2}, 0), f_3 = (-1/\sqrt{6}, 1/\sqrt{6}, \sqrt{2/3})$. This is an orthonormal basis of \mathbb{R}^3 . Let v = (1, 1, 1). We can write $v = a_1f_1 + a_2f_2 + a_3f_3$ with $a_1, a_2, a_3 \in \mathbb{R}$. Find a_1 by using the fact that the basis $\{f_1, f_2, f_3\}$ is orthonormal.
- 3. a: Define what it means for a subset of a vector space to be a basis of that subspace. b: Is $\{1, (t-1), (t-1)^2, (t-1)^3\}$ a basis of P_3 . Here P_3 denotes the vector space of all polynomials of degree less than or equal to 3. Why? Again note that explaining why is the important part of the question.
- 4. a: Let V, W be vector spaces. Define what it means for a function $F: V \to W$ to be a linear transformation.

b: Are the following linear transformations? Why? Note that the why part of the question is very important.

b1:
$$F : P_2 \to P_2, p \mapsto p'' - 3p$$

b2: $F : P_2 \to \mathbb{R}, p \mapsto p(2)$
b3: $F : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}, A \to A^2 - A$

- 5. Consider the differential equation y'' + y = 0.
 - a: The functions $y_1(t) = cos(t), y_2(t) = sin(t)$ are solutions to this differential equation. Let V be the vector space of functions from \mathbb{R} to \mathbb{R} that have arbitrarily many derivatives. Let $D: V \to V$ be defined by $D: f \mapsto f'' + f$. What proper; ties of D insure that the functions $a_1y_1 + a_2y_2$ for any $a_1, a_2 \in \mathbb{R}$ are also solutions to our differential equation?

b: The function y(t)=t+1 is a solution to the differential equation y'' + y = t + 1 (We are giving you this fact; you do not have to show this is the case). What are all the solutions to the differential equation y'' + y = t + 1. c: Justify your answer to part (b) of this question.

- c. Justify your answer to part (b) of this question.
- 6. a: State the rank-nullity theorem. Define dimension of a vector space. Define rank and nullity.
 - b: Use the rank nullity theorem to show that any differential equation of the form

$$\frac{d^2y}{dx^2} + y = f(x)$$

has a solution for any polynomial $f(x) \in P_2$ Here P_2 is the vector space of polynomials of degree ≤ 2 .

7. Let T be the liner transformation from P_2 to P_2 given by

$$f(x) \mapsto f'' - 2f$$

Find the matrix of T with respect to the basis $\{1, x - 1, (x - 1)^2\}$.

8. Define an inner product (or equivalently, a dot product) on P_2 by $\langle f, g \rangle = \int_0^1 fg dx$. Find an othonormal basis of P_2 with respect to this inner product.

9. The two vectors
$$u_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
 and $u_2 = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ are orthogonal

a: Verify this fact.

b: Find the vector in the space spanned by u_1 and u_2 that is closest to the vector $\begin{pmatrix} 1\\2 \end{pmatrix}$

- $\begin{pmatrix} 2\\1 \end{pmatrix}$.
- 10. Using the method of expansion by minors compute the determinant of the matrix

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

Find the determinant of the matrix using row and column operations.

11. a: Define eigenvalue and eigenvector of a matrix.

b: Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{pmatrix} 7/5 & -1/5 \\ -6/5 & 8/5 \end{pmatrix}$$

c: Find a matrix B so that $C = BAB^{-1}$ is diagonal. What is the matrix C? Partial Answer: the eigenvalues of the matrix A are 1, 2, The corresponding eigenvectors are $\begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} -1\\3 \end{pmatrix}$.

12. Let C(n) denote the coyote population of an imaginary ecosystem after n time intervals have passed. Similarly let R(n) denote the roadrunner population of this ecosystem after n time intervals. Let

$$A = \begin{pmatrix} 10/21 & 16/21 \\ -8/21 & 46/21 \end{pmatrix}$$

Assume that

$$\begin{pmatrix} C(n+1)\\ R(n+1) \end{pmatrix} = A \begin{pmatrix} C(n)\\ R(n) \end{pmatrix}.$$

Describe how this ecosystem behaves for different positive initial values $\begin{pmatrix} R(0) \\ C(0) \end{pmatrix}$. In particular indicate for what initial values both species survive and for what initial values only one species survives in the long run.

Partial answer: The eigenvalues of the matrix A are 2/3, 2. The corresponding eigenvectors are $\begin{pmatrix} 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.