ON THE MINIMAX SPHERE EVERSION

ROB KUSNER

In the late 1950°s Steve Smale proved that it is possible to evert — turn inside-out —
a sphere in three space. For several years it remained a mystery how to explicitly carry
this out until Arnold Shapiro, and later Bernard Morin and Bill Thurston, each invented
their own sphere eversions in the 1960°s and "70’s. This note is a little “mystory” —
which rhymes with “history”™ — concerning a relatively new, and in some sense optimal,
sphere eversion. I hope it will explain the context in which I thought up this eversion,
and how the animation presented here has come to pass.

Kids climbing fences, along with engineers building mountain roads and scientists
rocketing to the moon, know that the easiest way to get from one side to the other (and
back again) is to follow the path which goes over the lowest place. This is so obvious to
kids that they don’t have a name for — or at least they don’t tell their parents about —
this place on a fence, but of course this place is usually called a pass or saddle on roads
through the mountains.

It is precisely such a lowest energy saddle that we encounter halfway through turning a
sphere inside-out via the minimaz sphere eversion. Indeed, the minimax sphere eversion
might be viewed as the “easiest” path of immersed spheres leading from a round sphere
with outside-out to one with outside-in. The energy which climbing kids and road
engineers care about is the height they need to go above the surrounding territory. For
us mathematicians interested in everting spheres, another energy is needed: the elastic
bending energy, which assigns to any immersed surface the integral of the square of the
mean curvature. For historical reasons this energy is often called W, after Tom Willmore,
who rekindled interest in W among mathematicians in the mid-1960’s.

I began working with the elastic bending energy W in the early 1980’s when I was a
graduate student at Berkeley learning low dimensional topology from Rob Kirby, and
starting to work on minimal surfaces and variational problems with Rick Schoen. I was
looking for functions with nice gradient flows on the configuration spaces of embedded or
immersed surfaces. This was motivated in part by Allen Hatcher’s (then recent) proof of
the Smale Conjecture, which in one formulation asserts that the diffeomorphism group
of R? is homotopy equivalent to the orthogonal group O(3). An equivalent form of the
Smale Conjecture is:

e The space of embedded spheres in R? is contractible.

I was interested in giving an analytic proof of this with some kind of gradient flow for
W, using a key fact which had just been proven by Robert Bryant:

e The only embedded W-critical sphere is round.

My strategy was to start with any embedded sphere and follow some (negative) W-
gradient flow till the sphere stopped flowing, and thus, was round. The main problem



I ran into was that any reasonable W-gradient flow need not preserve embeddedness —
this is because the flow corresponds to a fourth-order parabolic equation (second-order
parabolic equations enjoy a maximum principle which maintains embeddedness) — and
Bryant had found immersed W-critical spheres with self intersections. Since other, more
subtle issues (such as perturbing W slightly to ensure certain compactness properties of
the flow) also were needed, I set aside this approach to the Hatcher Theorem.

Nevertheless, there were other nice results of Bryant about immersed W-critical spheres
which I wanted to understand variationally. This leads fairly directly to the idea of the
minimax sphere eversion.

To begin, let me review a couple of nice properties of W, the simplest of which is:

e W is uniquely minimized by round spheres, with the value 47; any other surface S
has energy W(S) greater than 4.

Another property that W enjoys is an inequality (discovered by Peter Li and S.T.
Yau, and sharpened by me) that can be used to control the complexity of the immersed
surface:

e If there is a point of R® through which k& “sheets” of S pass, then W(.S) is at least
4km; the only way equality can occur here is if there is a complete minimal surface
S" in R?® with k planar ends “sheets at 00” and a Mobius transformation
which carries S’ to S (and oo, to the k-uple point on 5).

Notice that the first property follows from the second one, where £k = 1 and S’ is a
flat plane. The proof makes use of the fact that the quantity W+ 4km (where k is the
multiplicity of the surface at oco) is invariant under Mobius transformations of R? U co.

The interesting result Bryant had shown was that for immersed spheres, the lowest
critical value for W is 167, realized by a certain family of W-critical spheres with one
quadruple point. By the above, each surface arises from Mobius inversion of some
minimal surface in R with 4 planar ends. (Part of Bryant’s proof can be simplified and
unified using an abstract skew-form invented by Nick Schmitt, or even be replaced by a
clever topological argument — see my 1994 GANG preprint with Schmitt on the Spinor
Representation of Minimal Surfaces for arguments of each kind.)

Now I had also been aware, through conversations (around 1982) with John Hughes,
who was then finishing up his Berkeley thesis, about this nice fact due to Tom Banchoff
and Nelson Max:

e Every sphere eversion must pass through an immersed sphere with at least one
quadruple point.

Thus, every sphere eversion must pass over the magical W = 167 level, by the Li-Yau
inequality above. And if some W-critical sphere at this 167 level were a saddle point,
then we could simply flow to either side of the saddle (in the most negative Hessian
direction) by a W-gradient flow, and the flow would have to proceed down to the W-
minimizing round sphere on either side. Note that these two round spheres will have
the opposite orientation. So, by climbing back up the (positive) W-gradient flow, over
the saddle and back down the other side, one would get an optimal sphere eversion: the
minimax sphere eversion!

End of story? Not quite.



Hughes shared with me a beautifully illustrated manuscript by George Francis about
sphere eversions equivariant under all the cyclic rotation groups. This inspired me to
find an infinite family of W-critical spheres (even order group) and real projective planes
(odd order group), and their corresponding complete minimal surfaces with planar ends,
replete with symmetric Weierstrass data — including a W-minimizing Boy’s surface
with 3-fold symmetry — that I wrote about in my 1987 Bulletin of the A. M. §. article
Conformal Geometry and Complete Minimal Surfaces. At that time (summer of 1986)
Michael Callahan, David Hoffman and T made some still pictures of these surfaces at
pre-Silicon-Graphics era GANG.

Over the next few years these still images of eversion midpoints toured the world as
part of the GANG-produced exhibit Getting to the Surface, but conceptually they were
not very satisfying to me. I wanted to animate this minimax eversion; however, in the
mid 1980’s nobody that I knew had developed effective software for modelling this kind
of gradient flow. And I had other mathematics to work on, so the idea sat on a shelf
until....

In 1989 I was asked to help organize the Five Colleges Geometry Institute, and in
particular, to direct the first summer (1991) of the research program on the topic of
computation in geometric analysis. Ken Brakke and his evolver were star attractions,
and under the prodding of several of us, including Lucas Hsu, Ivan Sterling, John Sullivan
and myself, Brakke kindly agreed to let surfaces evolve according to motions other than
area-gradient flow! Indeed, that summer Brakke worked out, and programmed into
evolver, the formulas for discretized W-gradient flow. While learning to use evolver,
we created elaborate datafiles and evolved them (almost forever) there at Five Colleges;
and later, at GANG and at the Geometry Center.

A subset of us (Hsu, Sullivan and I) eventually wrote up some of our experiments
minimizing W on surfaces of higher genus in the first volume of David Epstein’s new
journal Ezxperimental Mathematics in 1992. To illustrate some of these evolutions for
general mathematical audiences, Jim Hoffman and I made the video FElastic Surfaces
and Conformal Geometry, first shown at Berkeley in October 1992. Then and there at
MSRI took place the fateful conversation among Francis, Sullivan and me, where we at
long last decided to animate the minimax sphere eversion!

The actual animation of the minimax eversion took “only” 3 more years  we were
scooped by Qutside In — and relied heavily upon Brakke’s development of the evolver
hessian method, which finds that negative eigendirection needed to push the eversion
midpoint saddle surface — computed from my inverted Weierstass data — to each side,
decreasing the W-energy to second order. The animation also owes its smoothness to
Sullivan’s expertise in scripting the evolver to saddle-flow the surface down to the
minimum of W. And the final rendering was performed using NCSA’s illiview under
Francis’ guidance, yielding the ultimate form you see here...

THE MINIMAX SPHERE EVERSION!
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