next up previous
Next: About this document ... Up: No Title Previous: No Title

Theory

For any conformal map X from C to IR^3 ${\rm I\!R^2\hspace{1mm}}$, $\Delta X=2\lambda^2
H\times N$ where

\begin{displaymath}\lambda=<\frac{\partial}{\partial x}X,\frac{\partial}{\partial x}X>,\end{displaymath}

H is the mean curvature, and N is the normal vector. We now define U as the mean curvature half density of the surface, equal to $\lambda*H$. We can obtain a conformal map by taking two arbitrary holomorphic functions of x and y, $\psi_1$ and $\psi_2$, and plugging them into the formula:


\begin{eqnarray*}X_1 &=& \int_{x_0,y_0}^{x,y} \frac i2 * (\bar{\psi_2}^2 +
\psi_...
..._0}^{x,y} \bar{\psi_2} \psi_1 dz + \psi_2 \bar{\psi_1}
d\bar{z}
\end{eqnarray*}


We now assume that $\psi_1$ and $\psi_2$ satisfy the differential equations:


  
$\displaystyle \frac{d}{dz}\psi_2 + U*\psi_1$ = 0 (1)
$\displaystyle - \frac{d}{d\bar{z}}\psi_1 + U*\psi_2$ = 0 (2)

If we assume $\psi_1$ and $\psi_2$ are of the form:


  
$\displaystyle \psi_1$ = h1(x)*eiy (3)
$\displaystyle \psi_2$ = h2(x)*eiy (4)

(1) and (2) can be rewritten in terms of h1 and h2 as follows:


  
h1' = 2U*h2 + h1 (5)
h2' = -2U*h1 - h2 (6)

Using (1)-(6), we obtain a surface of revolution as follows:


\begin{eqnarray*}X_1 &=& \sin{2y_0} \int_{x_0,y_0}^{x,y_0} (h_2^2-h_1^2) dx + \f...
...{2y_0} + \cos{2y}) \\
X_3 &=& 2 \int_{x_0,y_0}^{x,y_0} h_1 h_2
\end{eqnarray*}


We have the differential equations (5) and (6) satisfied by h1 and h2:


\begin{displaymath}\sin2y \int_{x_0,y_0}^{x,y_0} (h_2^2-h_1^2) dx = -(h_1^2+h_2^2) * \frac14
\sin{2y_0} \end{displaymath}

So:


\begin{displaymath}X = \left\{ \begin{array}{l}
(\sin{2y}) (h_1^2 + h_2^2) / 4 \...
...}) (h_1^2 + h_2^2) / 4 \\
\int 2 h_1 h_2
\end{array} \right.
\end{displaymath}

As a result, the parametrization is a surface of revolution.

Thus, given the mean curvature half density of a surface, U, we can solve the differential equations and obtain a parametrization for a surface of revolution.


next up previous
Next: About this document ... Up: No Title Previous: No Title
GANG World Wide Web Service
2001-10-29