[1.1] 
Callahan, M., Hoffman, D. & Hoffman, J.
Computer graphics tools for the study of minimal surfaces

[1.2] 
Callahan, M., Hoffman, D. & Meeks III, W. H.
Embedded minimal surfaces with an infinite number of ends

[1.3] 
Hoffman, D. & Meeks III, W. H.
The global theory of properly embedded minimal surfaces

[1.4] 
Meeks III, W. H.
Regularity of the Albanese map for nonoriented surfaces

[1.5] 
Eydeland, A. & Spruck, J.
The inverse power method for semilinear elliptic equations

[1.6] 
Spruck, J.
The elliptic sinhGordon equation and the construction of toroidal soap bubbles

[1.7] 
Barbanel, E.
Complete minimal surfaces in R^{3} of low total curvature

[1.8] 
Yang, Y.
Global spatially periodic solutions to the GinzburgLandau equation

[1.9] 
Yang, Y.
Almostperiodic solutions of nonlinear parabolic equations

[1.10] 
Yang, Y.
A nonlinear parabolic equation of a wavenumber selection model in cellular flows

[1.11] 
Choi, H. I., Meeks III, W. H. & White, B.
A rigidity theorem for properly embedded minimal surfaces in R^{3}

[1.12] 
Eydeland, A. & Turkington, B.
A numerical study of vortex rings with swirl

[1.13] 
Yang, Y.
Comparison of eigenvalues of SturmLiouville problems

[1.14] 
Yang, Y.
Uniqueness without maximum principle for selfadjoint elliptic boundary value problems

[1.15] 
Yang, Y.
Numerical solution of a boundary value problem arising in plate deflection theory

[1.16] 
Anderson, D. M. & Thomas, E. L.
Microdomain morphology of star copolymers in the StrongSegregation limit

[1.17] 
Thomas, E. L., Anderson, D. M., Henkee, C. S. & Hoffman, D.
Periodic area minimizing surfaces in block copolymers

[1.18] 
Caffarelli, L. A., Gidas, B. & Spruck, J.
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth

[1.19] 
Meeks III, W. H. & Rosenberg, H.
The global theory of doubly periodic minimal surfaces

[1.20] 
Eydeland, A. & Van Groesen, E.
An extended selforganization principle for modeling and calculating the dissipation of 2D confined Eulerian vortices

[1.21] 
Hoffman, D. & Meeks III, W. H.
Embedded minimal surfaces of finite topology

[1.22] 
Hoffman, D. & Meeks III, W. H.
The strong halfspace theorem for minimal surfaces

[1.23] 
Hoffman, D. & Meeks III, W. H.
A variational approach for the existence of embedded minimal surfaces

[1.24] 
Eydeland, A. & Turkington, B.
An iterative method for computing steady vortex flow systems

[1.25] 
Meeks III, W. H. & Fang, Y.
A note on the geometry of minimal annuli in R^{3}

[1.26] 
Hoffman, D. & Meeks III, W. H.
The asymptotic behavior of properly embedded minimal surfaces of finite topology

[1.27] 
Callahan, M., Hoffman, D. & Meeks III, W. H.
The structure of singlyperiodic minimal surfaces

[1.28] 
Meeks III, W. H. & Rosenberg, H.
The maximum principle at infinity for minimal surfaces in flat three manifolds

[1.29] 
Eydeland, A., Spruck, J. & Turkington, B.
Multiconstrained variational problems of nonlinear eigenvalue type: new formulations and algorithms
postscript
pdf
dvi
abstract

[1.30] 
Baldes, A. & Wohlrab, O.
Computer graphics of solutions of the generalized MongeAmpere equation
postscript
pdf
dvi
abstract

[1.31] 
Hoffman, D.
New examples of singlyperiodic minimal surfaces and their qualitative behavior
postscript
pdf
dvi
abstract

[1.32] 
Hoffman, D. & Meeks III, W. H.
Limits of minimal surfaces and Scherk's second surface

[1.33] 
Fang, Y.
A new family of Enneper type minimal surfaces

[1.34] 
Meeks III, W. H. & Rosenberg, H.
The geometry of periodic minimal surfaces

[1.35] 
Fang, Y. & Meeks III, W. H.
The geometry of minimal surfaces in a halfspace in R^{3}

[1.36] 
Meeks III, W. H.
The theory of triply periodic minimal surfaces
postscript
pdf
dvi
abstract

[1.37] 
Evans, L. C. & Spruck, J.
Motion of level sets by mean curvature I
postscript
pdf
dvi
abstract

[1.38] 
Evans, L. C. & Spruck, J.
Motion of level sets by mean curvature II
postscript
pdf
dvi
abstract

[1.39] 
Caffarelli, L. A. & Spruck, J.
Variational problems with critical Sobolev growth and positive Dirichlet data
postscript
pdf
dvi
abstract

[1.40] 
Guan, B. & Wei, F.
A maximum principle at infinity for minimal surfaces in R^{3}
